LeetCode算法训练-动态规划

欢迎关注个人公众号:爱喝可可牛奶

LeetCode算法训练-动态规划

理论知识

动态规划当前状态是由前一个状态推导出来的,而贪心没有状态的转移

动态规划需要借助dp数组,可能是一维也可能是二维的

  1. 首先要明确dp数组是用来干什么的,下标对应什么
  2. 状态如何转移 ? 也就是理清递推公式
  3. dp数组如何初始化
  4. 如何遍历
  5. 举个栗子模拟推导一遍

LeetCode 509. 斐波那契数

分析

F(n) = F(n - 1) + F(n - 2),其中 n > 1

代码

class Solution {
    public int fib(int n) {
        if (n <= 1) return n;             
        int[] dp = new int[n + 1];
        dp[0] = 0;
        dp[1] = 1;
        for (int index = 2; index <= n; index++){
            dp[index] = dp[index - 1] + dp[index - 2];
        }
        return dp[n];
    }
}

LeetCode 70. 爬楼梯

分析

错误 没有理清递推函数

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n+1];
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++){
            dp[i] = dp[i-1] + dp[i-2]+2;
        }
        return dp[n];
    }
}

dp[i]表示到当前楼梯有多少种跳法,从这里可以往后跳一步或者两步,这样就建立了前后阶梯的关系,但是不能跳2个一步

<u>当前阶梯跳数能由前一个阶梯跳一步或前两个阶梯跳两步得到</u>

代码

class Solution {
    public int climbStairs(int n) {
        if(n == 1){
            return 1;
        }
        int[] dp = new int[n+1];
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
}

LeetCode 746. 使用最小花费爬楼梯

整数数组 cost ,cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

分析

根据测试用例能够得出台阶顶部在哪里,cost[i] :从下标i-1爬一步,从i-2爬两步到台阶顶部

dp[i]表示爬到第i个台阶的最小花费,

状态转移:dp[i] = Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])

代码

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int len = cost.length;
        int[] dp = new int[len+1];
        // 初始化
        dp[0] = 0;
        dp[1] = 0;
        for(int i = 2; i <= len; i++){
            dp[i] = Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
        }
        return dp[len];
    }
}

总结

  1. 搞清楚dp数组含义以及对应下标反映了什么状态
  2. 弄清楚转移公式
  3. 初始化
  4. 确定遍历顺序(这个和转移公式紧密相关)
  5. 模拟一下
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352

推荐阅读更多精彩内容