chatbot系列_引导及个性化推荐提升用户粘性

用户在面对一款新产品,不管是在认知范畴还是操作层面,都会有一定的学习成本在里面。而如何帮助用户快速熟悉和上手操作,就成了新产品推向市场的一道难题。不仅如此,产品要在市场竞争中长久生存下去,除了要获得用户、留住用户,还要能活跃用户。从产品层面考虑,想要留住并活跃用户,好的引导和推荐是每款产品必不可少的。本文主要探究在对话式机器人领域里,产品该怎样设计功能引导及推荐。

全文结构以回答下面三个问题为主:

1、首次进入对话如何引导用户使用

2、不知道说什么的用户如何推荐

3、如何深入对话流,构成话轮转换

1、首次进入对话如何引导用户使用

新用户在第一次进入新产品时,都会带有些好奇和不知所措。特别是机器人这类比较新颖,还不具有普世性的产品。对于机器人产品,可以采用其独有的对话式交互,通过人和机器人的对话,一步步引导用户体验产品功能点。

这里有几个关键点要梳理下:第一,chatbot主要功能有哪些,这些功能的优先级如何排列,最符合用户期望的功能又有哪些。第二,chatbot是作为独立应用还是嵌入式功能,若为嵌入式功能,用户从不同入口进入,该做怎样的差异化引导。第三,是否区分不同的目标用户,这些目标用户的人物画像或关键词是什么。对这些不同类型或画像的目标用户,怎样引导更符合他们的心智模型。而从对话式交互体验上,就要考虑什么语言语气是用户自然交流时会说的,用怎样的话术才能吸引用户深入了解。

对于独立的机器人产品,新用户场景比较有限。用户刚进入时可以在chatbot简单介绍后,就将机器人所能支持的功能整体罗列出来。罗列一般采用横排左右滑屏的布局。横向滑屏其实有缺陷,大部分用户不会滑屏或基本上只滑半屏至一屏,这样就导致后几个功能用户看不到。而且列表推荐会影响对话轻量型的交互特征,给人头重脚轻的感觉。如果这些功能非目标用户期望或常用功能,置后排列也无妨。

也有些独立机器人app,新用户进入后并不给出功能列表,而是将功能集成在某个入口,通过话术引导用户去点击查看。比如出门问问对话界面,可以通过发问或点击左上角问号图标看到功能详情。微软cortana干脆就没有功能介绍这项内容,对于小娜无法回答的问题,统一返回bing搜索结果。这就无所谓支持或不支持哪些功能。这样设计的好处在于能够保证整体对话流轻量简洁,不用每次进入都给出功能列表。


图1. 新用户功能介绍引导

不过具体采用哪种新手引导方式还要根据不同业务做出合适的选择。个人比较偏向于不给出功能列表,而是将功能点融入到对话里或集成在某个界面入口,在用户触发使用的时候再进行说明介绍。功能介绍列表更像是传统的GUI设计,本质上并不属于对话,而且会加重整体对话流。(不包括部分便于用户查看的GUI答案模块)

如果机器人是作为产品嵌入式功能,那么更适合用对话引导的方式让用户一步步了解产品功能。阿里小蜜,京东小咚、同花顺小花都属于嵌入在主产品下的附属功能。如果嵌入的场景比较多样,可以根据不同的场景给出对应的功能推荐。因为只有在触达用户需求的时候,用户才会有耐心了解并掌握它们。譬如同花顺分时页面右上角的机器人入口,如果新用户从这个页面进入,那么他一定是对这只股票有兴趣才会去看分时。这时候进入机器人就可以引导用户首先使用机器人的个股分析功能。

例如:

chatbot:您好,我是您的投资助理,可以帮您分析下这只股票哦

user:那帮忙分析下呗

chatbot:该股近20日区间大单净额和主力资金流向……。我还能从基本面、技术面和消息面这些方面帮您进行深入分析。

user:看下该股消息面怎么样

chatbot:从消息面上看……

2、不知道说什么的用户如何推荐

有些用户在面对机器人时不知道该说什么,可能只会说些“你好”、“你是谁”之类的话。他们并非不知道机器人所能提供的功能,而是不知道如何表达,或者不知道某些问题机器人也能问出来。

要解决这类问题可以从两方面考虑。一方面直接通过对话话术告诉用户可以怎么问,在结尾部分添加“你可以对我说”,“你可以问我”等表达。例如“如果您找不到某个功能入口,可以对我说‘打开最新资讯’。”

图2. “你可以对我说”推荐话术

或者将“你可以问我”后面接的推荐问句以标签的形式放在输入框上,让用户一目了然。

图3. 推荐问句标签

另一方面就是在输入框内给出推荐问句,用户点发送按钮就直接发送问句。推荐问句要避免过长,能够在输入框可视范围内完整展示。其实在一些传统app搜索框内也会存在这类推荐形式。输入框内推荐问句不建议一成不变,可在间隔一定时长后切换问句。另外也可以在输入框周围给出默认推荐标签。不同于问答后的推荐标签,默认推荐标签以简短为主,并能在一屏内能展示2个或2个以上。

图4. 输入框内推荐问句

3、如何深入对话,构成话轮转换

主要有两种方式:问句推荐和话题引导

(1)问句推荐

● 进一步推荐

如果通过你的前期引导,用户主动发送问句,那么可以说你就向前迈进了一大步。下一个难题就是如何让用户和机器人持续对话。要解决这个难题,首先系统要能推荐和当前场景相符的问句。这些问句可以是在上一句基础上的继续发问,因为用户输入的问句意图不明确,导致给出答案比较模糊或是宽泛,在此基础上,我们可能还会推荐进一步筛选的问句给用户(不同于多轮对话,多轮是chatbot多次向用户发问,直到每个槽位都有对应值后,返回最终答案)。

举个例子:

user:附近有哪些餐馆?

chatbot:为您推荐几家附近的餐馆,非常不错,去试试吧

给出餐馆列表,并且给出进一步筛选问句

“离我最近的”、“哪些最便宜”、“哪些最有档次”、“哪些评分最高”……

● 相似推荐

推荐问句也可以是和用户问句相似的问句,或是同属于一个类型的问句。相似问句适用于客服类答案,用户在看完一个问题的解决方式后,也许会延伸出其他相关疑问。也可能用户本没疑问,但在系统的推荐下,又激起了用户的好奇心。例如在小蚂答里问“什么是花呗”,系统在给出回答后,会附带三个相关问题:“花呗如何提前还款”、“花呗的额度可以调整吗”、“点击还款,提示没有花呗额度”。

● 同类推荐

同类型问句之间相当于是平级关系,是评价一个事物不可或缺的各个维度。用户也许只对其中几个维度感兴趣。在没有个性化数据的前提下,可以展示几个热门或者主要的评价维度。这能够命中大部分用户的兴趣点。

举个例子:

user:中国平安怎么样

chatbot:该股……

系统回答用户问句的同时,给出各个方面的分析维度

“技术面分析”、“消息面分析”、“资金面分析”、“基本面分析”……

(2)话题引导

一般人和机器人对话都会包含特定场景,或者特定话题。深入对话,构成话轮转换不一定都要给出推荐问句。在部分场景下,也可以根据当下所处的场景,让机器人主动和用户进行交流。如果主动交流的话题是用户关心的,那么深入对话轮次的效果将会比推荐问句好很多。

关键问题是机器人以什么话题作为引子,引导用户对话。可以从大多数用户在该场景下和机器人交流的对话路径,或是以业务需求为目的所创建的对话路径展开,也可以是按照博主、大牛的使用操作逻辑展开。后一种在引导话术里最好带上“大V们都是怎么怎么的”,以吸引用户进一步交流。

举个例子:

user:想买个洗面奶,不知道买什么牌子

chatbot:先请问下您是什么肤质类型呢

user:油性肤质

chatbot:为您找到以下几款抗油清洁洗面奶

chatbot:如果您还是不知道该买什么,我可以推荐您几款时尚博主们比较青睐的洗面奶。其中之一就是xxx洗面奶,它在某某平台很受欢迎……

还有一种就是按照场景的固有逻辑给出引导,例如交易环节涉及到的路径主要是“下单-填写收货信息-确认订单-支付……”。

若用户当前场景为已填写收货信息,那么机器人就需要引导用户到确认订单环节,话术描述可以是“为了保障您的购物体验,请确认订单是否正确”。

如果积累了一定用户量,并且存储了用户画像标签,或是个性化数据。那么不管是问句推荐还是话题引导,都会更有效果。推荐问句可以按照用户特征给出,例如“猜你喜欢”推荐模式。而话题引导则是按照用户的使用逻辑、行为特征来设计。

总结

利用对话式交互对用户进行引导和推荐还比较新颖,许多方式方法还有待挖掘和探讨。但是通过引导和推荐留住并活跃用户的本质是一样的,只是换了一种承载形式。人工智能快速发展的浪潮已经不可抵挡,对话式交互也会成为继GUI界面后另一种自然交互“界面”。关于对话式交互设计还有更多领域等待我们深入研究。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容