映射(mapping)机制用于进行字段类型确认,将每个字段匹配为一种确定的数据类型(string
, number
, booleans
, date
等)。
分析(analysis)机制用于进行全文文本(Full Text)的分词,以建立供搜索用的反向索引。
映射及分析
当在索引中处理数据时,我们注意到一些奇怪的事。有些东西似乎被破坏了:
在索引中有12个tweets,只有一个包含日期2014-09-15
,但是我们看看下面查询中的total
hits。
GET /_search?q=2014 # 12 个结果
GET /_search?q=2014-09-15 # 还是 12 个结果 !
GET /_search?q=date:2014-09-15 # 1 一个结果
GET /_search?q=date:2014 # 0 个结果 !
为什么全日期的查询返回所有的tweets,而针对date
字段进行年度查询却什么都不返回?
为什么我们的结果因查询_all
字段(译者注:默认所有字段中进行查询)或date
字段而变得不同?
想必是因为我们的数据在_all
字段的索引方式和在date
字段的索引方式不同而导致。
让我们看看Elasticsearch在对gb
索引中的tweet
类型进行mapping(也称之为模式定义[注:此词有待重新定义(schema definition)])后是如何解读我们的文档结构:
GET /gb/_mapping/tweet
返回:
{
"gb": {
"mappings": {
"tweet": {
"properties": {
"date": {
"type": "date",
"format": "dateOptionalTime"
},
"name": {
"type": "string"
},
"tweet": {
"type": "string"
},
"user_id": {
"type": "long"
}
}
}
}
}
}
Elasticsearch为对字段类型进行猜测,动态生成了字段和类型的映射关系。返回的信息显示了date
字段被识别为date
类型。_all
因为是默认字段所以没有在此显示,不过我们知道它是string
类型。
date
类型的字段和string
类型的字段的索引方式是不同的,因此导致查询结果的不同,这并不会让我们觉得惊讶。
你会期望每一种核心数据类型(strings, numbers, booleans及dates)以不同的方式进行索引,而这点也是现实:在Elasticsearch中他们是被区别对待的。
但是更大的区别在于确切值(exact values)(比如string
类型)及全文文本(full text)之间。
这两者的区别才真的很重要 - 这是区分搜索引擎和其他数据库的根本差异。
确切值(Exact values) vs. 全文文本(Full text)
Elasticsearch中的数据可以大致分为两种类型:
确切值 及 全文文本。
确切值是确定的,正如它的名字一样。比如一个date或用户ID,也可以包含更多的字符串比如username或email地址。
确切值"Foo"
和"foo"
就并不相同。确切值2014
和2014-09-15
也不相同。
全文文本,从另一个角度来说是文本化的数据(常常以人类的语言书写),比如一篇推文(Twitter的文章)或邮件正文。
全文文本常常被称为非结构化数据
,其实是一种用词不当的称谓,实际上自然语言是高度结构化的。
问题是自然语言的语法规则是如此的复杂,计算机难以正确解析。例如这个句子:
May is fun but June bores me.
到底是说的月份还是人呢?
确切值是很容易查询的,因为结果是二进制的 -- 要么匹配,要么不匹配。下面的查询很容易以SQL表达:
WHERE name = "John Smith"
AND user_id = 2
AND date > "2014-09-15"
而对于全文数据的查询来说,却有些微妙。我们不会去询问这篇文档是否匹配查询要求?
。
但是,我们会询问这篇文档和查询的匹配程度如何?
。换句话说,对于查询条件,这篇文档的相关性有多高?
我们很少确切的匹配整个全文文本。我们想在全文中查询包含查询文本的部分。不仅如此,我们还期望搜索引擎能理解我们的意图:
一个针对
"UK"
的查询将返回涉及"United Kingdom"
的文档一个针对
"jump"
的查询同时能够匹配"jumped"
,"jumps"
,"jumping"
甚至"leap"
"johnny walker"
也能匹配"Johnnie Walker"
,"johnnie depp"
及"Johnny Depp"
"fox news hunting"
能返回有关hunting on Fox News的故事,而"fox hunting news"
也能返回关于fox hunting的新闻故事。
为了方便在全文文本字段中进行这些类型的查询,Elasticsearch首先对文本分析(analyzes),然后使用结果建立一个倒排索引。我们将在以下两个章节讨论倒排索引及分析过程。
倒排索引
Elasticsearch使用一种叫做倒排索引(inverted index)的结构来做快速的全文搜索。倒排索引由在文档中出现的唯一的单词列表,以及对于每个单词在文档中的位置组成。
例如,我们有两个文档,每个文档content
字段包含:
- The quick brown fox jumped over the lazy dog
- Quick brown foxes leap over lazy dogs in summer
为了创建倒排索引,我们首先切分每个文档的content
字段为单独的单词(我们把它们叫做词(terms)或者表征(tokens))(译者注:关于terms
和tokens
的翻译比较生硬,只需知道语句分词后的个体叫做这两个。),把所有的唯一词放入列表并排序,结果是这个样子的:
Term | Doc_1 | Doc_2 | |
---|---|---|---|
Quick | X | ||
The | X | ||
brown | X | X | |
dog | X | ||
dogs | X | ||
fox | X | ||
foxes | X | ||
in | X | ||
jumped | X | ||
lazy | X | X | |
leap | X | ||
over | X | X | |
quick | X | ||
summer | X | ||
the | X |
现在,如果我们想搜索"quick brown"
,我们只需要找到每个词在哪个文档中出现即可:
Term | Doc_1 | Doc_2 |
---|---|---|
brown | X | X |
quick | X | |
----- | ------- | ----- |
Total | 2 | 1 |
两个文档都匹配,但是第一个比第二个有更多的匹配项。
如果我们加入简单的相似度算法(similarity algorithm),计算匹配单词的数目,这样我们就可以说第一个文档比第二个匹配度更高——对于我们的查询具有更多相关性。
但是在我们的倒排索引中还有些问题:
-
"Quick"
和"quick"
被认为是不同的单词,但是用户可能认为它们是相同的。 -
"fox"
和"foxes"
很相似,就像"dog"
和"dogs"
——它们都是同根词。 -
"jumped"
和"leap"
不是同根词,但意思相似——它们是同义词。
上面的索引中,搜索"+Quick +fox"
不会匹配任何文档(记住,前缀+
表示单词必须匹配到)。只有"Quick"
和"fox"
都在同一文档中才可以匹配查询,但是第一个文档包含"quick fox"
且第二个文档包含"Quick foxes"
。(译者注:这段真啰嗦,说白了就是单复数和同义词没法匹配)
用户可以合理地希望两个文档都能匹配查询,我们也可以做得更好。
如果我们将词为统一为标准格式,这样就可以找到不是确切匹配查询,但是足以相似从而可以关联的文档。例如:
-
"Quick"
可以转为小写成为"quick"
。 -
"foxes"
可以被转为根形式"fox"
。同理"dogs"
可以被转为"dog"
。 -
"jumped"
和"leap"
同义就可以只索引为单个词"jump"
现在的索引:
Term | Doc_1 | Doc_2 |
---|---|---|
brown | X | X |
dog | X | X |
fox | X | X |
in | X | |
jump | X | X |
lazy | X | X |
over | X | X |
quick | X | X |
summer | X | |
the | X | X |
但我们还未成功。我们的搜索"+Quick +fox"
依旧失败,因为"Quick"
的确切值已经不在索引里,不过,如果我们使用相同的标准化规则处理查询字符串的content
字段,查询将变成"+quick +fox"
,这样就可以匹配到两个文档。
IMPORTANT
这很重要。你只可以找到确实存在于索引中的词,所以索引文本和查询字符串都要标准化为相同的形式。
这个标记化和标准化的过程叫做分词(analysis)。
分析和分析器
分析(analysis)是这样一个过程:
- 首先,标记化一个文本块为适用于倒排索引单独的词(term)
- 然后标准化这些词为标准形式,提高它们的“可搜索性”或“查全率”
这个工作是分析器(analyzer)完成的。一个分析器(analyzer)只是一个包装用于将三个功能放到一个包里:
字符过滤器
首先字符串经过字符过滤器(character filter),它们的工作是在标记化前处理字符串。字符过滤器能够去除HTML标记,或者转换"&"
为"and"
。
分词器
下一步,分词器(tokenizer)被标记化成独立的词。一个简单的分词器(tokenizer)可以根据空格或逗号将单词分开(译者注:这个在中文中不适用)。
标记过滤
最后,每个词都通过所有标记过滤(token filters),它可以修改词(例如将"Quick"
转为小写),去掉词(例如停用词像"a"
、"and"
、"the"
等等),或者增加词(例如同义词像"jump"
和"leap"
)
Elasticsearch提供很多开箱即用的字符过滤器,分词器和标记过滤器。这些可以组合来创建自定义的分析器以应对不同的需求。我们将在《自定义分析器》章节详细讨论。
内建的分析器
不过,Elasticsearch还附带了一些预装的分析器,你可以直接使用它们。下面我们列出了最重要的几个分析器,来演示这个字符串分词后的表现差异:
"Set the shape to semi-transparent by calling set_trans(5)"
标准分析器
标准分析器是Elasticsearch默认使用的分析器。对于文本分析,它对于任何语言都是最佳选择(译者注:就是没啥特殊需求,对于任何一个国家的语言,这个分析器就够用了)。它根据Unicode Consortium的定义的单词边界(word boundaries)来切分文本,然后去掉大部分标点符号。最后,把所有词转为小写。产生的结果为:
set, the, shape, to, semi, transparent, by, calling, set_trans, 5
简单分析器
简单分析器将非单个字母的文本切分,然后把每个词转为小写。产生的结果为:
set, the, shape, to, semi, transparent, by, calling, set, trans
空格分析器
空格分析器依据空格切分文本。它不转换小写。产生结果为:
Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
语言分析器
特定语言分析器适用于很多语言。它们能够考虑到特定语言的特性。例如,english
分析器自带一套英语停用词库——像and
或the
这些与语义无关的通用词。这些词被移除后,因为语法规则的存在,英语单词的主体含义依旧能被理解(译者注:stem English words
这句不知道该如何翻译,查了字典,我理解的大概意思应该是将英语语句比作一株植物,去掉无用的枝叶,主干依旧存在,停用词好比枝叶,存在与否并不影响对这句话的理解。)。
english
分析器将会产生以下结果:
set, shape, semi, transpar, call, set_tran, 5
注意"transparent"
、"calling"
和"set_trans"
是如何转为词干的。
当分析器被使用
当我们索引(index)一个文档,全文字段会被分析为单独的词来创建倒排索引。不过,当我们在全文字段搜索(search)时,我们要让查询字符串经过同样的分析流程处理,以确保这些词在索引中存在。
全文查询我们将在稍后讨论,理解每个字段是如何定义的,这样才可以让它们做正确的事:
- 当你查询全文(full text)字段,查询将使用相同的分析器来分析查询字符串,以产生正确的词列表。
- 当你查询一个确切值(exact value)字段,查询将不分析查询字符串,但是你可以自己指定。
现在你可以明白为什么《映射和分析》的开头会产生那种结果:
-
date
字段包含一个确切值:单独的一个词"2014-09-15"
。 -
_all
字段是一个全文字段,所以分析过程将日期转为三个词:"2014"
、"09"
和"15"
。
当我们在_all
字段查询2014
,它一个匹配到12条推文,因为这些推文都包含词2014
:
GET /_search?q=2014 # 12 results
当我们在_all
字段中查询2014-09-15
,首先分析查询字符串,产生匹配任一词2014
、09
或15
的查询语句,它依旧匹配12个推文,因为它们都包含词2014
。
GET /_search?q=2014-09-15 # 12 results !
当我们在date
字段中查询2014-09-15
,它查询一个确切的日期,然后只找到一条推文:
GET /_search?q=date:2014-09-15 # 1 result
当我们在date
字段中查询2014
,没有找到文档,因为没有文档包含那个确切的日期:
GET /_search?q=date:2014 # 0 results !
测试分析器
尤其当你是Elasticsearch新手时,对于如何分词以及存储到索引中理解起来比较困难。为了更好的理解如何进行,你可以使用analyze
API来查看文本是如何被分析的。在查询字符串参数中指定要使用的分析器,被分析的文本做为请求体:
GET /_analyze
{
"analyzer":"standard",
"text":"Text to analyze"
}
结果中每个节点在代表一个词:
{
"tokens": [
{
"token": "text",
"start_offset": 0,
"end_offset": 4,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "to",
"start_offset": 5,
"end_offset": 7,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "analyze",
"start_offset": 8,
"end_offset": 15,
"type": "<ALPHANUM>",
"position": 3
}
]
}
token
是一个实际被存储在索引中的词。position
指明词在原文本中是第几个出现的。start_offset
和end_offset
表示词在原文本中占据的位置。
analyze
API 对于理解Elasticsearch索引的内在细节是个非常有用的工具,随着内容的推进,我们将继续讨论它。
指定分析器
当Elasticsearch在你的文档中探测到一个新的字符串字段,它将自动设置它为全文string
字段并用standard
分析器分析。
你不可能总是想要这样做。也许你想使用一个更适合这个数据的语言分析器。或者,你只想把字符串字段当作一个普通的字段——不做任何分析,只存储确切值,就像字符串类型的用户ID或者内部状态字段或者标签。
为了达到这种效果,我们必须通过映射(mapping)人工设置这些字段。
映射
为了能够把日期字段处理成日期,把数字字段处理成数字,把字符串字段处理成全文本(Full-text)或精确的字符串值,Elasticsearch需要知道每个字段里面都包含了什么类型。这些类型和字段的信息存储(包含)在映射(mapping)中。
正如《数据吞吐》一节所说,索引中每个文档都有一个类型(type)。
每个类型拥有自己的映射(mapping)或者模式定义(schema definition)。一个映射定义了字段类型,每个字段的数据类型,以及字段被Elasticsearch处理的方式。映射还用于设置关联到类型上的元数据。
在《映射》章节我们将探讨映射的细节。这节我们只是带你入门。
核心简单字段类型
Elasticsearch支持以下简单字段类型:
类型 | 表示的数据类型 |
---|---|
String | string |
Whole number |
byte , short , integer , long
|
Floating point |
float , double
|
Boolean | boolean |
Date | date |
当你索引一个包含新字段的文档——一个之前没有的字段——Elasticsearch将使用动态映射猜测字段类型,这类型来自于JSON的基本数据类型,使用以下规则:
JSON type | Field type |
---|---|
Boolean: true or false
|
"boolean" |
Whole number: 123
|
"long" |
Floating point: 123.45
|
"double" |
String, valid date: "2014-09-15"
|
"date" |
String: "foo bar"
|
"string" |
注意
这意味着,如果你索引一个带引号的数字——
"123"
,它将被映射为"string"
类型,而不是"long"
类型。然而,如果字段已经被映射为"long"
类型,Elasticsearch将尝试转换字符串为long,并在转换失败时会抛出异常。
查看映射
我们可以使用_mapping
后缀来查看Elasticsearch中的映射。在本章开始我们已经找到索引gb
类型tweet
中的映射:
GET /gb/_mapping/tweet
这展示给了我们字段的映射(叫做属性(properties)),这些映射是Elasticsearch在创建索引时动态生成的:
{
"gb": {
"mappings": {
"tweet": {
"properties": {
"date": {
"type": "date",
"format": "strict_date_optional_time||epoch_millis"
},
"name": {
"type": "string"
},
"tweet": {
"type": "string"
},
"user_id": {
"type": "long"
}
}
}
}
}
}
小提示
错误的映射,例如把
age
字段映射为string
类型而不是integer
类型,会造成查询结果混乱。
要检查映射类型,而不是假设它是正确的!
自定义字段映射
虽然大多数情况下基本数据类型已经能够满足,但你也会经常需要自定义一些特殊类型(fields),特别是字符串字段类型。
自定义类型可以使你完成以下几点:
- 区分全文(full text)字符串字段和准确字符串字段(译者注:就是分词与不分词,全文的一般要分词,准确的就不需要分词,比如『中国』这个词。全文会分成『中』和『国』,但作为一个国家标识的时候我们是不需要分词的,所以它就应该是一个准确的字符串字段)。
- 使用特定语言的分析器(译者注:例如中文、英文、阿拉伯语,不同文字的断字、断词方式的差异)
- 优化部分匹配字段
- 指定自定义日期格式(译者注:这个比较好理解,例如英文的
Feb,12,2016
和 中文的2016年2月12日
) - 以及更多
映射中最重要的字段参数是type
。除了string
类型的字段,你可能很少需要映射其他的type
:
{
"number_of_clicks": {
"type": "integer"
}
}
string
类型的字段,默认的,考虑到包含全文本,它们的值在索引前要经过分析器分析,并且在全文搜索此字段前要把查询语句做分析处理。
对于string
字段,两个最重要的映射参数是index
和analyer
。
index
index
参数控制字符串以何种方式被索引。它包含以下三个值当中的一个:
值 | 解释 |
---|---|
analyzed |
首先分析这个字符串,然后索引。换言之,以全文形式索引此字段。 |
not_analyzed |
索引这个字段,使之可以被搜索,但是索引内容和指定值一样。不分析此字段。 |
no |
不索引这个字段。这个字段不能为搜索到。 |
string
类型字段默认值是analyzed
。如果我们想映射字段为确切值,我们需要设置它为not_analyzed
:
{
"tag": {
"type": "string",
"index": "not_analyzed"
}
}
其他简单类型(
long
、double
、date
等等)也接受index
参数,但相应的值只能是no
和not_analyzed
,它们的值不能被分析。
分析
对于analyzed
类型的字符串字段,使用analyzer
参数来指定哪一种分析器将在搜索和索引的时候使用。默认的,Elasticsearch使用standard
分析器,但是你可以通过指定一个内建的分析器来更改它,例如whitespace
、simple
或english
。
{
"tweet": {
"type": "string",
"analyzer": "english"
}
}
在《自定义分析器》章节我们将告诉你如何定义和使用自定义的分析器。
更新映射
你可以在第一次创建索引的时候指定映射的类型。此外,你也可以晚些时候为新类型添加映射(或者为已有的类型更新映射)。
重要
你可以向已有映射中增加字段,但你不能修改它。如果一个字段在映射中已经存在,这可能意味着那个字段的数据已经被索引。如果你改变了字段映射,那已经被索引的数据将错误并且不能被正确的搜索到。
我们可以更新一个映射来增加一个新字段,但是不能把已有字段的类型那个从analyzed
改到not_analyzed
。
为了演示两个指定的映射方法,让我们首先删除索引gb
:
DELETE /gb
然后创建一个新索引,指定tweet
字段的分析器为english
:
PUT /gb <1>
{
"mappings": {
"tweet" : {
"properties" : {
"tweet" : {
"type" : "string",
"analyzer": "english"
},
"date" : {
"type" : "date"
},
"name" : {
"type" : "string"
},
"user_id" : {
"type" : "long"
}
}
}
}
}
<1>
这将创建包含mappings
的索引,映射在请求体中指定。
再后来,我们决定在tweet
的映射中增加一个新的not_analyzed
类型的文本字段,叫做tag
,使用_mapping
后缀:
PUT /gb/_mapping/tweet
{
"properties" : {
"tag" : {
"type" : "string",
"index": "not_analyzed"
}
}
}
注意到我们不再需要列出所有的已经存在的字段,因为我们没法修改他们。我们的新字段已经被合并至存在的那个映射中。
测试映射
你可以通过名字使用analyze
API测试字符串字段的映射。对比这两个请求的输出:
GET /gb/_analyze?field=tweet&text=Black-cats <1>
GET /gb/_analyze?field=tag&text=Black-cats <2>
<1>
<2>
我们想要分析的文本被放在请求体中。
tweet
字段产生两个词,"black"
和"cat"
,tag
字段产生单独的一个词"Black-cats"
。换言之,我们的映射工作正常。
复合核心字段类型
除了之前提到的简单的标量类型,JSON还有null
值,数组和对象,所有这些Elasticsearch都支持:
多值字段
我们想让tag
字段包含多个字段,这非常有可能发生。我们可以索引一个标签数组来代替单一字符串:
{ "tag": [ "search", "nosql" ]}
对于数组不需要特殊的映射。任何一个字段可以包含零个、一个或多个值,同样对于全文字段将被分析并产生多个词。
言外之意,这意味着数组中所有值必须为同一类型。你不能把日期和字符窜混合。如果你创建一个新字段,这个字段索引了一个数组,Elasticsearch将使用第一个值的类型来确定这个新字段的类型。
当你从Elasticsearch中取回一个文档,任何一个数组的顺序和你索引它们的顺序一致。你取回的
_source
字段的顺序同样与索引它们的顺序相同。
然而,数组是做为多值字段被索引的,它们没有顺序。在搜索阶段你不能指定“第一个值”或者“最后一个值”。倒不如把数组当作一个值集合(bag of values)
空字段
当然数组可以是空的。这等价于有零个值。事实上,Lucene没法存放null
值,所以一个null
值的字段被认为是空字段。
这四个字段将被识别为空字段而不被索引:
"empty_string": "",
"null_value": null,
"empty_array": [],
"array_with_null_value": [ null ]
多层对象
我们需要讨论的最后一个自然JSON数据类型是对象(object)——在其它语言中叫做hash、hashmap、dictionary 或者 associative array.
内部对象(inner objects)经常用于在另一个对象中嵌入一个实体或对象。例如,做为在tweet
文档中user_name
和user_id
的替代,我们可以这样写:
{
"tweet": "Elasticsearch is very flexible",
"user": {
"id": "@johnsmith",
"gender": "male",
"age": 26,
"name": {
"full": "John Smith",
"first": "John",
"last": "Smith"
}
}
}
内部对象的映射
Elasticsearch 会动态的检测新对象的字段,并且映射它们为 object
类型,将每个字段加到 properties
字段下
{
"gb": {
"tweet": { <1>
"properties": {
"tweet": { "type": "string" },
"user": { <2>
"type": "object",
"properties": {
"id": { "type": "string" },
"gender": { "type": "string" },
"age": { "type": "long" },
"name": { <3>
"type": "object",
"properties": {
"full": { "type": "string" },
"first": { "type": "string" },
"last": { "type": "string" }
}
}
}
}
}
}
}
}
<1> 根对象.
<2><3> 内部对象.
对user
和name
字段的映射与tweet
类型自己很相似。事实上,type
映射只是object
映射的一种特殊类型,我们将 object
称为根对象。它与其他对象一模一样,除非它有一些特殊的顶层字段,比如 _source
, _all
等等。
内部对象是怎样被索引的
Lucene 并不了解内部对象。 一个 Lucene 文件包含一个键-值对应的扁平表单。 为了让 Elasticsearch 可以有效的索引内部对象,将文件转换为以下格式:
{
"tweet": [elasticsearch, flexible, very],
"user.id": [@johnsmith],
"user.gender": [male],
"user.age": [26],
"user.name.full": [john, smith],
"user.name.first": [john],
"user.name.last": [smith]
}
内部栏位可被归类至name,例如"first"
。 为了区别两个拥有相同名字的栏位,我们可以使用完整路径,例如"user.name.first"
或甚至类型
名称加上路径:"tweet.user.name.first"
。
注意: 在以上扁平化文件中,并没有栏位叫作
user
也没有栏位叫作user.name
。 Lucene 只索引阶层或简单的值,而不会索引复杂的资料结构。
对象-数组
内部对象数组
最后,一个包含内部对象的数组如何索引。 我们有个数组如下所示:
{
"followers": [
{ "age": 35, "name": "Mary White"},
{ "age": 26, "name": "Alex Jones"},
{ "age": 19, "name": "Lisa Smith"}
]
}
此文件会如我们以上所说的被扁平化,但其结果会像如此:
{
"followers.age": [19, 26, 35],
"followers.name": [alex, jones, lisa, smith, mary, white]
}
{age: 35}
与{name: Mary White}
之间的关联会消失,因每个多值的栏位会变成一个值集合,而非有序的阵列。 这让我们可以知道:
- 是否有26岁的追随者?
但我们无法取得准确的资料如:
- 是否有26岁的追随者且名字叫Alex Jones?
关联内部对象可解决此类问题,我们称之为嵌套对象,我们之後会在嵌套对象中提到它。