string
string表示的是一个可变的字节数组,内部结构实现上类似于Java的ArrayList,采用预分配冗余空间的方式来减少内存的频繁分配。
如图,内部为当前字符串实际分配的空间capacity一般要高于实际字符串长度len。
当字符串长度小于1M时,扩容都是加倍现有的空间,如果超过1M,扩容时一次只会多扩1M的空间。需要注意的是字符串最大长度为512M。
list
Redis将列表数据结构命名为list而不是array,是因为列表的存储结构用的是链表而不是数组,而且链表还是双向链表。因为它是链表,所以随机定位性能较弱O(n),首尾插入删除性能较优O(1)。如果list的列表长度很长,使用时我们一定要关注链表相关操作的时间复杂度。
快速列表
如果再深入一点,你会发现Redis底层存储的还不是一个简单的linkedlist,而是称之为快速链表quicklist的一个结构。
首先在列表元素较少的情况下会使用一块连续的内存存储,这个结构是ziplist,也即是压缩列表。它将所有的元素紧挨着一起存储,分配的是一块连续的内存。当数据量比较多的时候才会改成quicklist。因为普通的链表需要的附加指针空间太大,会比较浪费空间。比如这个列表里存的只是int类型的数据,结构上还需要两个额外的指针prev和next。所以Redis将链表和ziplist结合起来组成了quicklist。也就是将多个ziplist使用双向指针串起来使用。这样既满足了快速的插入删除性能,又不会出现太大的空间冗余。
hash
hash 的实现类似java的HashMap。
它使用二维结构,第一维是数组,第二维是链表,hash的内容key和value存放在链表中,数组里存放的是链表的头指针。通过key查找元素时,先计算key的hashcode,然后用hashcode对数组的长度进行取模定位到链表的表头,再对链表进行遍历获取到相应的value值,链表的作用就是用来将产生了「hash碰撞」的元素串起来,也就是拉链法解决hash冲突问题。哈希的第一维数组的长度也是2^n。
set
类似java的HashSet的内部实现使用的是HashMap。Redis的set结构也是一样,它的内部也使用hash结构,所有的value都指向同一个内部值。
sorted set
Redis 的 zset 是一个复合结构,第一个是hash,第二个是跳跃列表skiplist。hash 结构来存储 value 和 score 的对应关系,保障元素value的唯一性,可以通过元素value找到相应的score值。跳跃列表的目的在于给按照score排序,根据score的范围获取value列表。
跳跃列表
跳表(skip List)是一种随机化的数据结构,基于并联的链表,实现简单,插入、删除、查找的复杂度均为O(logN)。简单说来跳表也是链表的一种,只不过它在链表的基础上增加了跳跃功能,正是这个跳跃的功能,使得在查找元素时,跳表能够提供O(logN)的时间复杂度。
因为 zset 要支持随机的插入和删除,所以它不好使用数组来表示。而如果我们用一个有序链表来实现,那么我们要查找某个数据,就需要从头开始逐个进行比较(二分查找的对象必须是数组,只有数组才可以支持快速位置定位,链表做不到),也就是说,时间复杂度为O(n)。同样,当我们要插入新数据的时候,也要经历同样的查找过程,从而确定插入位置。
假如我们每相邻两个节点增加一个指针,让指针指向下下个节点,如下图:
现在当我们想查找数据的时候,可以先沿着这个新链表进行查找。当碰到比待查数据大的节点时,再回到原来的链表中进行查找。比如,我们想查找23,查找的路径是沿着下图中标红的指针所指向的方向进行的:
- 23首先和7比较,再和19比较,比它们都大,继续向后比较。
- 但23和26比较的时候,比26要小,因此回到下面的链表(原链表),与22比较。
- 23比22要大,沿下面的指针继续向后和26比较。23比26小,说明待查数据23在原链表中不存在,而且它的插入位置应该在22和26之间。
利用同样的方式,我们可以在上层新产生的链表上,继续为每相邻的两个节点增加一个指针,从而产生第三层链表。如下图:
skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似于一个二分查找,使得查找的时间复杂度可以降低到O(log n)。但是,这种方法在插入数据的时候有很大的问题。新插入一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。删除数据也有同样的问题。
skiplist为了避免这一问题,它不要求上下相邻两层链表之间的节点个数有严格的对应关系,而是为每个节点随机出一个层数(level)。比如,一个节点随机出的层数是3,那么就把它链入到第1层到第3层这三层链表中。为了表达清楚,下图展示了如何通过一步步的插入操作从而形成一个skiplist的过程:
实际应用中的skiplist每个节点应该包含key和value两部分。前面的描述中我们没有具体区分key和value,但实际上列表中是按照key(score)进行排序的,查找过程也是根据key在比较。
执行插入操作时计算随机数的过程,是一个很关键的过程,它对skiplist的统计特性有着很重要的影响。这并不是一个普通的服从均匀分布的随机数,它的计算过程如下:
- 首先,每个节点肯定都有第1层指针(每个节点都在第1层链表里)。
- 如果一个节点有第i层(i>=1)指针(即节点已经在第1层到第i层链表中),那么它有第(i+1)层指针的概率为p(redis中为25%)。
- 节点最大的层数不允许超过一个最大值,记为MaxLevel(redis中为64)。
计算随机层数的伪码如下所示:
randomLevel()
level := 1
// random()返回一个[0...1)的随机数
while random() < p and level < MaxLevel do
level := level + 1
return level
因为每层的晋升的概率都只有25%,所以官方的跳跃列表更加的扁平化,层高相对较低,在单个层上需要遍历的节点数量会稍多一点。也正是因为层数一般不高,所以遍历的时候从顶层开始往下遍历会非常浪费。跳跃列表会记录一下当前的最高层数maxLevel,遍历时从这个 maxLevel 开始遍历性能就会提高很多
在一个极端的情况下,zset 中所有的 score 值都是一样的,zset 的查找性能会退化为 O(n) 么?Redis 作者自然考虑到了这一点,所以 zset 的排序元素不只看 score 值,如果 score 值相同还需要再比较 value 值 (字符串比较)。
元素排名
如果仅仅使用上面的结构,rank 是不能算出来的。Redis 在 skiplist 的 forward 指针上进行了优化,给每一个 forward 指针都增加了 span 属性,span 是「跨度」的意思,表示从前一个节点沿着当前层的 forward 指针跳到当前这个节点中间会跳过多少个节点。Redis 在插入删除操作时会小心翼翼地更新 span 值的大小。这样当我们要计算一个元素的排名时,只需要将「搜索路径」上的经过的所有节点的跨度 span 值进行叠加就可以算出元素的最终 rank 值。
skiplist与平衡树的比较:
- 查找单个key,skiplist和平衡树的时间复杂度都为O(log n)。
- 在做范围查找的时候,平衡树比skiplist操作要复杂。
- 平衡树的插入和删除操作可能引发子树的调整,逻辑复杂,而skiplist的插入和删除只需要修改相邻节点的指针,操作简单又快速。
- 从内存占用上来说,skiplist比平衡树更灵活一些。一般来说,平衡树每个节点包含2个指针(分别指向左右子树),
- 从算法实现难度上来比较,skiplist比平衡树要简单得多。
参考文章:https://zsr.github.io/2017/07/03/redis-zset%E5%86%85%E9%83%A8%E5%AE%9E%E7%8E%B0/