Java基于opencv实现图像数字识别(四)—图像降噪

Java基于opencv实现图像数字识别(四)—图像降噪

我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类

这个工具类呢,就一个成员变量Mat,非常的简单,这里给出代码

public class ImageUtils {
    private static final int BLACK = 0;
    private static final int WHITE = 255;

    private Mat mat;

    /**
     * 空参构造函数
     */
    public ImageUtils() {

    }

    /**
     * 通过图像路径创建一个mat矩阵
     * 
     * @param imgFilePath
     *            图像路径
     */
    public ImageUtils(String imgFilePath) {
        mat = Imgcodecs.imread(imgFilePath);
    }

    public void ImageUtils(Mat mat) {
        this.mat = mat;
    }

    /**
     * 加载图片
     * 
     * @param imgFilePath
     */
    public void loadImg(String imgFilePath) {
        mat = Imgcodecs.imread(imgFilePath);
    }

    /**
     * 获取图片高度的函数
     * 
     * @return
     */
    public int getHeight() {
        return mat.rows();
    }

    /**
     * 获取图片宽度的函数
     * 
     * @return
     */
    public int getWidth() {
        return mat.cols();
    }

    /**
     * 获取图片像素点的函数
     * 
     * @param y
     * @param x
     * @return
     */
    public int getPixel(int y, int x) {
        // 我们处理的是单通道灰度图
        return (int) mat.get(y, x)[0];
    }

    /**
     * 设置图片像素点的函数
     * 
     * @param y
     * @param x
     * @param color
     */
    public void setPixel(int y, int x, int color) {
        // 我们处理的是单通道灰度图
        mat.put(y, x, color);
    }

    /**
     * 保存图片的函数
     * 
     * @param filename
     * @return
     */
    public boolean saveImg(String filename) {
        return Imgcodecs.imwrite(filename, mat);
    }
}

灰度化和二值化的代码我没有贴出来,因为代码实在有点长

我们接着上一步的成果,来开始我们的降噪

一、8邻域降噪

我感觉9宫格降噪更形象一点;即9宫格中心被异色包围,则同化


8邻域降噪

降噪效果还是蛮好的,这个方法对小噪点比较好

/**
     * 8邻域降噪,又有点像9宫格降噪;即如果9宫格中心被异色包围,则同化
     * @param pNum 默认值为1
     */
    public void navieRemoveNoise(int pNum) {
        int i, j, m, n, nValue, nCount;
        int nWidth = getWidth(), nHeight = getHeight();

        // 对图像的边缘进行预处理
        for (i = 0; i < nWidth; ++i) {
            setPixel(i, 0, WHITE);
            setPixel(i, nHeight - 1, WHITE);
        }

        for (i = 0; i < nHeight; ++i) {
            setPixel(0, i, WHITE);
            setPixel(nWidth - 1, i, WHITE);
        }

        // 如果一个点的周围都是白色的,而它确是黑色的,删除它
        for (j = 1; j < nHeight - 1; ++j) {
            for (i = 1; i < nWidth - 1; ++i) {
                nValue = getPixel(j, i);
                if (nValue == 0) {
                    nCount = 0;
                    // 比较以(j ,i)为中心的9宫格,如果周围都是白色的,同化
                    for (m = j - 1; m <= j + 1; ++m) {
                        for (n = i - 1; n <= i + 1; ++n) {
                            if (getPixel(m, n) == 0) {
                                nCount++;
                            }
                        }
                    }
                    if (nCount <= pNum) {
                        // 周围黑色点的个数小于阀值pNum,把该点设置白色
                        setPixel(j, i, WHITE);
                    }
                } else {
                    nCount = 0;
                    // 比较以(j ,i)为中心的9宫格,如果周围都是黑色的,同化
                    for (m = j - 1; m <= j + 1; ++m) {
                        for (n = i - 1; n <= i + 1; ++n) {
                            if (getPixel(m, n) == 0) {
                                nCount++;
                            }
                        }
                    }
                    if (nCount >= 7) {
                        // 周围黑色点的个数大于等于7,把该点设置黑色;即周围都是黑色
                        setPixel(j, i, BLACK);
                    }
                }
            }
        }

    }

二、连通域降噪
floodFill函数

我们先介绍一个函数(floodFill)

floodFill就是把一个点x的所有相邻的点都涂上x点的颜色,一直填充下去,直到这个区域内所有的点都被填充完为止

在计算的过程中,每扫描到一个黑色(灰度值为0)的点,就将与该点连通的所有点的灰度值都改为1,因此这一个连通域的点都不会再次重复计算了。下一个灰度值为0的点所有连通点的颜色都改为2,这样依次递加,直到所有的点都扫描完。接下来再次扫描所有的点,统计每一个灰度值对应的点的个数,每一个灰度值的点的个数对应该连通域的大小,并且不同连通域由于灰度值不同,因此每个点只计算一次,不会重复。这样一来就统计到了每个连通域的大小,再根据预设的阀值,如果该连通域大小小于阀值,则其就为噪点。这个算法比较适合检查大的噪点,与上个算法正好相反。

连通域降噪

因为我找的图像关系,效果可能不咋明显;

/**
     * 连通域降噪
     * @param pArea 默认值为1
     */
    public void contoursRemoveNoise(double pArea) {
        int i, j, color = 1;
        int nWidth = getWidth(), nHeight = getHeight();

        for (i = 0; i < nWidth; ++i) {
            for (j = 0; j < nHeight; ++j) {
                if (getPixel(j, i) == BLACK) {
                    //用不同颜色填充连接区域中的每个黑色点
                    //floodFill就是把一个点x的所有相邻的点都涂上x点的颜色,一直填充下去,直到这个区域内所有的点都被填充完为止
                    Imgproc.floodFill(mat, new Mat(), new Point(i, j), new Scalar(color));
                    color++;
                }
            }
        }
        
        //统计不同颜色点的个数
        int[] ColorCount = new int[255];

        for (i = 0; i < nWidth; ++i) {
            for (j = 0; j < nHeight; ++j) {
                if (getPixel(j, i) != 255) {
                    ColorCount[getPixel(j, i) - 1]++;
                }
            }
        }
        
        //去除噪点
        for (i = 0; i < nWidth; ++i) {
            for (j = 0; j < nHeight; ++j) {

                if (ColorCount[getPixel(j, i) - 1] <= pArea) {
                    setPixel(j, i, WHITE);
                }
            }
        }

        for (i = 0; i < nWidth; ++i) {
            for (j = 0; j < nHeight; ++j) {
                if (getPixel(j, i) < WHITE) {
                    setPixel(j, i, BLACK);
                }
            }
        }

    }

注:
本文章参考了很多博客,感谢;主要是跟着一个博客来实现的https://blog.csdn.net/ysc6688/article/category/2913009(也是基于opencv来做的,只不过他是用c++实现的)感谢

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容