NSMutableArray和NSDictionary实现原理

在日常的IOS开发中NSMutableArray和NSDictionary的使用率很高,但是我们很少会去思考它们的现实原理。

NSMutableArray

C数组:

优点:查询速度很快,直接通过下表找到对应的值

缺点:修改、删除数据很慢,需要移动基于所有的其他的元素

P160
P155

插入和删除一个元素,需要移动后面所有的元素

改进的目标:实现快速增加,删除

NSMutableArray的内部数据结构如下:

P158

几个主要变量:

offset: 有效数据起始位置偏移量

size: 实际占用的内存大小

used: 数组的实际的有效数据个数

*list: 实际内存的起始地址

P156

删除元素

[arr removeObjecAtIndex:0];

[arr removeObjecAtIndex:0];

执行两次 remove的实现:

P159

仅仅修改 offset即可,内存完全不需要移动。

那么问题来了,移走的这个元素的内存怎么释放的呢?

回到OBJC的引用计数,offset移走,这个对象的引用计数减一,对象引用计数到0之后,由autoreleasepool释放。over

插入元素

[arr insertObjec:@"test"atIndex:0];

执行insertObjec的实现:

P154

如果buff的size还够用,不需要扩展buff,数据会在buff的末端添加进去,此时offset由0变成size-1,used+1.over

循环buff的牛逼之处就在于此,无需移动内存,实现插入元素。

删除元素

[arr removeObjecAtIndex:3];

实现:

P157

删除头尾元素直接修改offset或者used即可

但是如果删除中间元素,就避免不了移动其他元素,不过NSArray会选择更少移动的那一边移动数据。

所以我们在实际使用过程中应该尽量避免这么做。

tip:

NSMutableArray *array = [NSMutableArray array];

for (int i = 0; i < 10000; i++) {

[array addObject:[NSObject new]];

}

[array removeAllObjects];

数组移除所有元素,buff并不会被立即清空

输出size的结果:

<colgroup style="margin: 0px; padding: 0px;"><col style="margin: 0px; padding: 0px; width: 130px;"><col style="margin: 0px; padding: 0px; width: 130px;"></colgroup>
|

1

|

Size: 14336

|

如果你在利用NSArray保存大量数据的时候,就要注意了。remove之后,记得置为nil,才能立刻释放掉buff.

总结:

1.数组越界奔溃: index > _used+offset 或 index < 0。

2.如果想要内存记录释放,remove之后记得置nil.或者直接置nil.猜想Array的dealloc的方法会自动给所有元素发release消息。

NSDictionary

NSDictionary(字典)是使用hash表来实现key和value之间的映射和存储的

方法:- (void)setObject:(id)anObject forKey:(id)aKey;

Objective-C中的字典NSDictionary底层其实是一个哈希表

根据数据结构可以发现dictionary内部使用了两个指针数组分别来保存keys和values,先不去讨论这两个数组的元素如何形成对应关系,已知的是dictionary采用的是连续存储的方式存储键值对,因此接下来我们将一步步了解字典是如何完成key-value的匹配过程。我们刚才在CFDictionary的结构体的时候看到了key和values这两个二级指针,可以基本断定为数组结构,由于是两个数组分别存储,因此,key哈希出来的数组下标地址,同样这个地址对应到values数组的下标,就是匹配到的值。因此keys和values这两个数组的长度一致才能保证匹配到数据。内部结构还有个_capacity表示当前通列表的扩充阀域 ,当count数量达到这个长度就扩容

可以看到,NSDictionary设置的key和value,key值会根据特定的hash函数算出建立的空桶数组,keys和values同样多,然后存储数据的时候,根据hash函数算出来的值,找到对应的index下标,如果下标已有数据,开放定址法后移动插入,如果空桶数组到达数据阀值,这个时候就会把空桶数组扩容,然后重新哈希插入。这样把一些不连续的key-value值插入到了能建立起关系的hash表中,当我们查找的时候,key根据哈希值算出来,然后根据索引,直接index访问hash表keys和hash表values,这样查询速度就可以和连续线性存储的数据一样接近O(1)了,只是占用空间有点大,性能就很强悍。如果删除的时候,也会根据_maker标记逻辑上的删除,除非NSDictionary(NSDictionary本体的hash值就是count)内存被移除。我们也会根据dictionary之所以采用这种设计,其一出于查询性能的考虑;其二dictionary在使用过程中总是会很快的被释放,不会长期占用内存。

哈希原理

散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。

哈希概念:哈希表的本质是一个数组,数组中每一个元素称为一个箱子(bin),箱子中存放的是键值对。

三:哈希存储过程

1.根据 key 计算出它的哈希值 h。

2.假设箱子的个数为 n,那么这个键值对应该放在第 (h % n) 个箱子中。

3.如果该箱子中已经有了键值对,就使用开放寻址法或者拉链法解决冲突。

在使用拉链法解决哈希冲突时,每个箱子其实是一个链表,属于同一个箱子的所有键值对都会排列在链表中。

哈希表还有一个重要的属性: 负载因子(load factor),它用来衡量哈希表的空/满程度,一定程度上也可以体现查询的效率,计算公式为:

负载因子 = 总键值对数 / 箱子个数

负载因子越大,意味着哈希表越满,越容易导致冲突,性能也就越低。因此,一般来说,当负载因子大于某个常数(可能是 1,或者 0.75 等)时,哈希表将自动扩容。

哈希表在自动扩容时,一般会创建两倍于原来个数的箱子,因此即使 key 的哈希值不变,对箱子个数取余的结果也会发生改变,因此所有键值对的存放位置都有可能发生改变,这个过程也称为重哈希(rehash)。

哈希表的扩容并不总是能够有效解决负载因子过大的问题。假设所有 key 的哈希值都一样,那么即使扩容以后他们的位置也不会变化。虽然负载因子会降低,但实际存储在每个箱子中的链表长度并不发生改变,因此也就不能提高哈希表的查询性能。

转载自:
https://www.cnblogs.com/firstrate/p/8313443.html
https://blog.csdn.net/u012886093/article/details/90767481

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容