hbase shell

创建表

create 'test1', 'lf', 'sf'

lf: column family of LONG values (binary value)

-- sf: column family of STRING values

导入数据

put 'test1', 'user1|ts1', 'sf:c1', 'sku1'

put 'test1', 'user1|ts2', 'sf:c1', 'sku188'

put 'test1', 'user1|ts3', 'sf:s1', 'sku123'

put 'test1', 'user2|ts4', 'sf:c1', 'sku2'

put 'test1', 'user2|ts5', 'sf:c2', 'sku288'

put 'test1', 'user2|ts6', 'sf:s1', 'sku222'

一个用户(userX),在什么时间(tsX),作为rowkey

对什么产品(value:skuXXX),做了什么操作作为列名,比如,c1: click from homepage; c2: click from ad; s1: search from homepage; b1: buy

查询案例

谁的值=sku188

scan 'test1', FILTER=>"ValueFilter(=,'binary:sku188')"

ROW                          COLUMN+CELL                   

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=sku188

谁的值包含88

scan 'test1', FILTER=>"ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL   

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=sku188

user2|ts5                  column=sf:c2, timestamp=1409122355030, value=sku288


通过点击进来的(column为c2)值包含88的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('c2') AND ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL

user2|ts5                  column=sf:c2, timestamp=1409122355030, value=sku288

通过搜索进来的(column为s)值包含123或者222的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('s') AND ( ValueFilter(=,'substring:123') OR ValueFilter(=,'substring:222') )"

ROW                          COLUMN+CELL

user1|ts3                  column=sf:s1, timestamp=1409122354954, value=sku123

user2|ts6                  column=sf:s1, timestamp=1409122355970, value=sku222

rowkey为user1开头的

scan 'test1', FILTER => "PrefixFilter ('user1')"

ROW                          COLUMN+CELL

user1|ts1                  column=sf:c1, timestamp=1409122354868, value=sku1

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=sku188

user1|ts3                  column=sf:s1, timestamp=1409122354954, value=sku123

FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version

KeyOnlyFilter: 只要key,不要value

scan 'test1', FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,'binary:sku188') AND KeyOnlyFilter()"

ROW                          COLUMN+CELL

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=

从user1|ts2开始,找到所有的rowkey以user1开头的

scan 'test1', {STARTROW=>'user1|ts2', FILTER => "PrefixFilter ('user1')"}

ROW                          COLUMN+CELL

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=sku188

user1|ts3                  column=sf:s1, timestamp=1409122354954, value=sku123

从user1|ts2开始,找到所有的到rowkey以user2开头

scan 'test1', {STARTROW=>'user1|ts2', STOPROW=>'user2'}

ROW                          COLUMN+CELL

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=sku188

user1|ts3                  column=sf:s1, timestamp=1409122354954, value=sku123

查询rowkey里面包含ts3的

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SubstringComparator

import org.apache.hadoop.hbase.filter.RowFilter

scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts3'))}

ROW                          COLUMN+CELL

user1|ts3                  column=sf:s1, timestamp=1409122354954, value=sku123

查询rowkey里面包含ts的

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SubstringComparator

import org.apache.hadoop.hbase.filter.RowFilter

scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts'))}

ROW                          COLUMN+CELL

user1|ts1                  column=sf:c1, timestamp=1409122354868, value=sku1

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=sku188

user1|ts3                  column=sf:s1, timestamp=1409122354954, value=sku123

user2|ts4                  column=sf:c1, timestamp=1409122354998, value=sku2

user2|ts5                  column=sf:c2, timestamp=1409122355030, value=sku288

user2|ts6                  column=sf:s1, timestamp=1409122355970, value=sku222

加入一条测试数据

put 'test1', 'user2|err', 'sf:s1', 'sku999'

查询rowkey里面以user开头的,新加入的测试数据并不符合正则表达式的规则,故查询不出来

import org.apache.hadoop.hbase.filter.RegexStringComparator

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SubstringComparator

import org.apache.hadoop.hbase.filter.RowFilter

scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^user\d+\|ts\d+$'))}

ROW                          COLUMN+CELL

user1|ts1                  column=sf:c1, timestamp=1409122354868, value=sku1

user1|ts2                  column=sf:c1, timestamp=1409122354918, value=sku188

user1|ts3                  column=sf:s1, timestamp=1409122354954, value=sku123

user2|ts4                  column=sf:c1, timestamp=1409122354998, value=sku2

user2|ts5                  column=sf:c2, timestamp=1409122355030, value=sku288

user2|ts6                  column=sf:s1, timestamp=1409122355970, value=sku222

加入测试数据

put 'test1', 'user1|ts9', 'sf:b1', 'sku1'

b1开头的列中并且值为sku1的

scan 'test1', FILTER=>"ColumnPrefixFilter('b1') AND ValueFilter(=,'binary:sku1')"

ROW                          COLUMN+CELL                                                                     

user1|ts9                  column=sf:b1, timestamp=1409124908668, value=sku1

SingleColumnValueFilter的使用,b1开头的列中并且值为sku1的

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SingleColumnValueFilter

import org.apache.hadoop.hbase.filter.SubstringComparator

scan 'test1', {COLUMNS => 'sf:b1', FILTER => SingleColumnValueFilter.new(Bytes.toBytes('sf'), Bytes.toBytes('b1'), CompareFilter::CompareOp.valueOf('EQUAL'), Bytes.toBytes('sku1'))}

ROW                          COLUMN+CELL

user1|ts9                  column=sf:b1, timestamp=1409124908668, value=sku1

hbase zkcli 的使用

hbase zkcli

ls /

[hbase, zookeeper]

[zk: hadoop000:2181(CONNECTED) 1] ls /hbase

[meta-region-server, backup-masters, table, draining, region-in-transition, running, table-lock, master, namespace, hbaseid, online-snapshot, replication, splitWAL, recovering-regions, rs]

[zk: hadoop000:2181(CONNECTED) 2] ls /hbase/table

[member, test1, hbase:meta, hbase:namespace]

[zk: hadoop000:2181(CONNECTED) 3] ls /hbase/table/test1

[]

[zk: hadoop000:2181(CONNECTED) 4] get /hbase/table/test1

?master:60000}l$??lPBUF

cZxid = 0x107

ctime = Wed Aug 27 14:52:21 HKT 2014

mZxid = 0x10b

mtime = Wed Aug 27 14:52:22 HKT 2014

pZxid = 0x107

cversion = 0

dataVersion = 2

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 31

numChildren = 0

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352