iOS下使用OpenCV进行图像识别

OpenCV提供了机器学习程序和图像识别的框架。接下来我们看看它是如何实现这些功能的。

首先OpenCV提供的机器学习是监督学习,也就是我们需要提供给机器正样本和负样本,使机器生成相应的检测器。OpenCV使用进行图像识别的检测器叫级联分类器,所谓的级联分类器,就是将若干的简单的分量分类器(可以理解为一般的普通分类器)依次串联起来,最终的检测分类结果,要依次通过所有的分量分类器才能算是一个有效的检测分类结果。否则,就认为当前检测区域内没有我们需要找的目标。

所以我们先要做的是,收集训练样本->生成正、负样本描述文件->生成正样本特征文件->进行分类器训练

OpenCV中有两个程序可以训练级联分类器: opencv_haartraining和opencv_traincascade。opencv_traincascade 是一个新程序,使用OpenCV 2.x API 以C++编写。这二者主要的区别是 opencv_traincascade 支持 Haar、Hog和 LBP(Local Binary Patterns)三种特征,并易于增加其他的特征。与Haar特征相比,LBP特征是整数特征,因此训练和检测过程都会比Haar特征快几倍。LBP和Haar特征用于检测的准确率,是依赖训练过程中的训练数据的质量和训练参数。训练一个与基于Haar特征同样准确度的LBP的分类器是可能的。

参考链接:https://blog.csdn.net/uncle_lin/article/details/48582251

训练完后的级联分类器是一个xml文件。我们将这个文件导入项目中就可以使用进行图像识别了。

OpenCV中提供了CascadeClassifier类,首先通过项目中的xml文件初始化这个类。

例如:

cv::CascadeClassifier humanFaceClassifier([[bundle pathForResource:@"haarcascade_frontalface_alt" ofType:@"xml"] UTF8String])

接下来将想要识别的图像传入这个类的函数detectMultiScale就可以进行图像识别了

例如:

humanFaceClassifier.detectMultiScale(equalizedImage, humanFaceRects, DETECT_HUMAN_FACE_SCALE_FACTOR, DETECT_HUMAN_FACE_MIN_NEIGHBORS, 0, detectHumanFaceMinSize);

识别到目标的Rect存在函数的第二个参数中。

至此,OpenCV中的图像识别功能就完成了。

参考资料:iOS  Application  Development  with  OpenCV 3.pdf  chapter 4

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容