设计模式--单例

简单介绍:

  • 资料借鉴:http://cantellow.iteye.com/blog/838473
  • 单例模式是一种经常用到的软件设计模式。在它的核心结构中只包含一个被称为单例的特殊类。通过单例模式可以保证系统中应用该模式的类只有一个实例。即一个类只有一个实例

定义:

  • 一个类有且只有一个实例,并且自行实例化向整个系统提供。

特点:

  • 单例类只能有一个实例。
  • 单例类必须自己创建自己的唯一实例。
  • 单例类必须给所有其他对象提供这一实例。

实现方式:

  • 一般来说,我们有以下几个必要的操作:

    1. 私有化构造方法;
    2. final类(定义为不可继承,这点书上没有提到,暂时还在研究)
    3. 将类的实例对象定义为一个私有的属性(不限制为成员变量)
    4. 通过getInstance()方法获取实例,若私有的实例属性对象引用不为空则返回,否则实例化该属性并返回
  • 这里先介绍四种实现方式

    1. 饿汉模式
    2. 懒汉模式
    3. 双重验证
    4. 静态内部类模式

饿汉模式

  • 先看第一种方式,饿汉模式顾名思义,迫不及待的想要吃(初始化实例),在类中定义一个私有静态本类的实例化对象,在类加载的过程就进行此对象的实例化,之后的对此类实例的调用都是调用此实例。

代码如下:

public class Singleton2 {
    private static Singleton2 singleton2= new Singleton2();
    private Singleton2(){}
    public static Singleton2 getInstance() {
        return singleton2;
    }
    public static String getStr() {
        return "Create String type Object";
    }
}

懒汉模式

  • 饿汉模式是较为简单的实现方式,同样也是较为常用的方式。但他有着一定的缺陷:虽然在单例模式中大多都只调用getInstance()方法,但不排除有其他的方式导致类加载,比如如果类中getStr()这种与类的实例无关的方法如果被调用,就会触发类加载,从而对静态成员进行初始化,但是此类有可能并不需要实例化,这样在某种程度上会造成一定的资源浪费。也就无法达到lazy loading的效果。

  • 这就引入了懒汉模式
    懒汉模式:只有在第一此调用类的实例对象时才会初始化类的实例,从而实现延迟加载

代码如下:

public class Singleton3 {
    private static Singleton3 singleton2 = null;
    private Singleton3();
    Tools.println("类实例化");
    }
    public static synchronized Singleton3 getInstance(){
        if(singleton2 == null)
            singleton2 = new Singleton3();
        return singleton2;
    }
    public static void CreateString(){
        Tools.print("Create String in Singleton3");
    }
}
  • 懒汉模式通过getInstance()方法创建实例,这样只有在使用到实例的时候才会初始化实例对象,实现了延迟加载,但是这种模式会出现线程同步问题:一个线程调用了getInstace()方法,判断为空后进行实例的创建,此时又有了一个线程调用了getInstance()方法,但此刻第一个线程还没有完成实例化的操作,故此线程也会实例化一个对象。所以我们需要为getInstance()方法加上同步关键字synchronized 。

双重检测方式

  • 那么问题来了,我们使用延迟加载就是为了提升系统性能,而引入了同步关键字则会大大影响多线程情况下的性能,所以此方式也有这很大的缺陷。

  • 下面就引入了双重检测方式
    双重检测方式:通过双重检测的方式完成延迟加载

代码如下:

class Singleton1 {
    private Singleton1() {
    }
    public static Singleton1 instance = null;
    public static Singleton1 getInstance() {
        if (instance == null) {
            synchronized (Singleton1.class) {
                if (instance == null) {
                    instance = new Singleton1();
                }
            }
        }
        return instance;
    }
}
  • 可以看到,首先判断实例对象是否为空,如果判断通过再进行同步操作。
  • 这种方式是解决了懒汉模式的效率问题,但同时也有一些问题,第一次加载时反应不快,由于java内存模型一些原因偶尔失败。失败原因可以详见http://blog.csdn.net/chenchaofuck1/article/details/51702129

静态内部类实现

  • 接下来引入一种已经较为完善并且使用较多的一种实现方式:静态内部类实现
    代码如下:
public class Singleton4 {
    private Singleton4(){}
    static class SingletonHolder {
    private static Singleton4 singleton = new Singleton4();
    }
    public static Singleton4 getInstance(){
    return SingletonHolder.singleton;
    }
}
  • 此方式利用了:静态内部类并不会在外部类类加载的时候也进行类加载,而是在它自身第一次被使用时进行类加载,并且jvm的类加载过程是对线程非常友好的,所以我们不需要担心同步问题。
public class Singleton4 {
    private Singleton4(){}
    static class SingletonHolder {
        private static Singleton4 singleton = new Singleton4();
    }
    public static Singleton4 getInstance(){
        return SingletonHolder.singleton;
    }
}

问题

  • 上述方法都是基本上实现了单例模式,但是依然有两个问题需要注意:

    1. 如果单例由不同的类装载器注入,那边有可能存在有多个单例类的实例。假如不是远端存取,假如一些servlet容器对每个servlet使用不同的类装载器,他们就会有个字的单例类的实例。
    2. 如果单例类实现了java.io.Serializable接口,那么此类的实例就可以被序列化和复原,如果序列化一个对象,然后复原多个此对象,就会出现多个单例类的实例。
    3. 关于此问题可以参照此文章http://blog.csdn.net/fg2006/article/details/6409423
  • 第一个问题的解决方法:

private static Class getClass(String classname)  throws ClassNotFoundException {     
     ClassLoader classLoader = Thread.currentThread().getContextClassLoader();     
      if(classLoader == null)     
         classLoader = Singleton.class.getClassLoader();     
     return (classLoader.loadClass(classname));     
   }     
}
  • 第二个问题的解决方法:
public class Singleton implements java.io.Serializable {     
   public static Singleton INSTANCE = new Singleton();     
   protected Singleton() {     
   }     
   private Object readResolve() {     
            return INSTANCE;     
     }    
}   
  • 这两种方法是我从其他的博客上看来的,现在还在了解中。。。

应用场景:

  • Windows的Task Manager(任务管理器)就是很典型的单例模式(这个很熟悉吧),想想看,是不是呢,你能打开两个windows task manager吗? 不信你自己试试看哦~
  • windows的Recycle Bin(回收站)也是典型的单例应用。在整个系统运行过程中,回收站一直维护着仅有的一个实例。
  • 网站的计数器,一般也是采用单例模式实现,否则难以同步。
  • 应用程序的日志应用,一般都何用单例模式实现,这一般是由于共享的日志文件一直处于打开状态,因为只能有一个实例去操作,否则内容不好追加。
  • Web应用的配置对象的读取,一般也应用单例模式,这个是由于配置文件是共享的资源。
  • 数据库连接池的设计一般也是采用单例模式,因为数据库连接是一种数据库资源。数据库软件系统中使用数据库连接池,主要是节省打开或者关闭数据库连接所引起的效率损耗,这种效率上的损耗还是非常昂贵的,因为何用单例模式来维护,就可以大大降低这种损耗。
  • 多线程的线程池的设计一般也是采用单例模式,这是由于线程池要方便对池中的线程进行控制。
  • 操作系统的文件系统,也是大的单例模式实现的具体例子,一个操作系统只能有一个文件系统。
  • HttpApplication也是单位例的典型应用。熟悉ASP.Net(IIS)的整个请求生命周期的人应该知道HttpApplication也是单例模式,所有的HttpModule都共享一个HttpApplication实例.

总结以上,不难看出:

  • 单例模式应用的场景一般发现在以下条件下:
    1. 资源共享的情况下,避免由于资源操作时导致的性能或损耗等。如上述中的日志文件,应用配置。
    2. 控制资源的情况下,方便资源之间的互相通信。如线程池等。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354