Redis阻塞整理笔记

Redis是典型的单线程架构,所有的读写操作都是在一条主线程中完成的。当Redis用于高并发场景时,这条线程就变成了它的生命线。如果出现阻塞,哪怕是很短时间,对于应用来说都是噩梦。

导致阻塞问题的原因:

内在原因:不合理地使用API或数据结构、CPU饱和、持久化阻塞等

外在原因:CPU竞争、内存交换、网络问题等

一、发现阻塞

应用方加入异常监控,如日志系统,比如Java语言中的logback或log4j

Redis监控系统,如CacheCloud

二、内在原因

2.1 API或数据结构使用不合理

通常Redis执行命令速度非常快,但是,如果对一个包含上万个元素的hash结构执行hgetall操作,由于数据量比较大且命令算法复杂度是O(n),这条命令执行速度必然很慢。

对于高并发的场景应该尽量避免在大对象上执行算法复杂度超过O(n)的命令。

(1)如何发现慢查询

Redis原生提供慢查询统计功能,执行slowlog get{n}命令可以获取最近的n条慢查询命令,默认对于执行超过10毫秒的命令都会记录到一个定长队列中,线上实例建议设置为1毫秒便于及时发现毫秒级以上的命令。

(2)发现慢查询后如何调整

修改为低算法复杂度的命令

调整大对象:缩减大对象数据或把大对象拆分为多个小对象,防止一次命令操作过多的数据。大对象拆分过程需要视具体的业务决定,如用户好友集合存储在Redis中,有些热点用户会关注大量好友,这时可以按时间或其他维度拆分到多个集合中。

(3)如何发现大对象

Redis本身提供发现大对象的工具。具体命令:

redis-cli -h {ip}  -p {port} --bigkeys

内部原理采用分段进行scan操作,把历史扫描过的最大对象统计出来便于分析优化。

2.2 CPU饱和

单线程的Redis处理命令时只能使用一个CPU。而CPU饱和是指Redis把单核CPU使用率跑到接近100%。使用top命令很容易识别出对应Redis进程的CPU使用率。CPU饱和是非常危险的,将导致Redis无法处理更多的命令,严重影响吞吐量和应用方的稳定性。对于这种情况,首先判断当前Redis的并发量是否达到极限,建议使用统计命令redis-cli -h {ip} -p {port} --stat获取当前Redis使用情况

2.3 持久化阻塞

对于开启了持久化功能的Redis节点,需要排查是否是持久化导致的阻塞。

fork阻塞:fork操作发生在RDB和AOF重写时,Redis主线程调用fork操作产生共享内存的子进程,由子进程完成持久化文件重写工作。如果fork操作本身耗时过长,必然会导致主线程的阻塞。

AOF刷盘阻塞:当我们开启AOF持久化功能时,文件刷盘的方式一般采用每秒一次,后台线程每秒对AOF文件做fsync操作。当硬盘压力过大时,fsync操作需要等待,直到写入完成。如果主线程发现距离上一次的fsync成功超过2秒,为了数据安全性它会阻塞直到后台线程执行fsync操作完成。这种阻塞行为主要是硬盘压力引起。

HugePage写操作阻塞:子进程在执行重写期间利用Linux写时复制技术降低内存开销,因此只有写操作时Redis才复制要修改的内存页。对于开启Transparent HugePages的操作系统,每次写命令引起的复制内存页单位由4K变为2MB,放大了512倍,会拖慢写操作的执行时间,导致大量写操作慢查询。

三、外在原因

3.1 CPU竞争

进程竞争:Redis是典型的CPU密集型应用,不建议和其他多核CPU密集型服务部署在一起。当其他进程过度消耗CPU时,将严重影响Redis吞吐量。可以通过top、sar等命令定位到CPU消耗的时间点和具体进程,这个问题比较容易发现,需要调整服务之间部署结构。

绑定CPU:部署Redis时为了充分利用多核CPU,通常一台机器部署多个实例。常见的一种优化是把Redis进程绑定到CPU上,用于降低CPU频繁上下文切换的开销。这个优化技巧正常情况下没有问题,但是存在例外情况,当Redis父进程创建子进程进行RDB/AOF重写时,如果做了CPU绑定,会与父进程共享使用一个CPU。子进程重写时对单核CPU使用率通常在90%以上,父进程与子进程将产生激烈CPU竞争,极大影响Redis稳定性。因此对于开启了持久化或参与复制的主节点不建议绑定CPU。

3.2 内存交换

内存交换(swap)对于Redis来说是非常致命的,Redis保证高性能的一个重要前提是所有的数据在内存中。如果操作系统把Redis使用的部分内存换出到硬盘,由于内存与硬盘读写速度差几个数量级,会导致发生交换后的Redis性能急剧下降。

预防内存交换:

保证机器充足的可用内存。

确保所有Redis实例设置最大可用内存(maxmemory),防止极端情况下Redis内存不可控的增长。

降低系统使用swap优先级。

3.3 网络问题

(1)连接拒绝

网络闪断(网络割接或者带宽耗尽)

Redis连接拒绝(超过客户端最大连接数)

连接溢出(进程限制或backlog队列溢出)

(2)网络延迟

网络延迟取决于客户端到Redis服务器之间的网络环境。主要包括它们之间的物理拓扑和带宽占用情况。常见的物理拓扑按网络延迟由快到慢可分为:同物理机>同机架>跨机架>同机房>同城机房>异地机房。但它们容灾性正好相反,同物理机容灾性最低而异地机房容灾性最高。

网络延迟问题经常出现在跨机房的部署结构上,对于机房之间延迟比较严重的场景需要调整拓扑结构,如把客户端和Redis部署在同机房或同城机房等。

带宽瓶颈通常出现在以下几个方面:

机器网卡带宽。

机架交换机带宽。

机房之间专线带宽。

(3)网卡软中断

网卡软中断是指由于单个网卡队列只能使用一个CPU,高并发下网卡数据交互都集中在同一个CPU,导致无法充分利用多核CPU的情况。网卡软中断瓶颈一般出现在网络高流量吞吐的场景。

欢迎工作一到五年的Java工程师朋友们加入Java架构开发: 855835163

群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容

  • 从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化、复制(及读写分离)、哨兵、以及集群。 本文将先说明...
    不变甄心阅读 693评论 0 4
  • 前言 在上一篇文章中,介绍了Redis内存模型,从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化、复...
    Java架构阅读 2,308评论 3 21
  • 企业级redis集群架构的特点 海量数据 高并发 高可用 要达到高可用,持久化是不可减少的,持久化主要是做灾难恢复...
    lucode阅读 2,205评论 0 7
  • 大家好,我是帅气小伙,差不多一个月没有更文了,因为我想写出一个网瘾少年的内心,所以我把自己陷进了网络游戏,说白了就...
    帅气小伙阅读 7,715评论 2 4
  • 喜欢微笑,并不表示你现在过得很好,而是你知道,只有微笑,以后才会过得比现在要好。 ​ ​​​​
    暖暖的多肉苔藓世界阅读 311评论 0 0