蓄水池采样(Reservoir Sampling)

在一个给定长度的数组中随机等概率抽取一个数据很容易,但如果面对的是长度未知的海量数据流呢?蓄水池采样(Reservoir Sampling)算法就是来解决这个问题的, 它在分析一些大数据集的时候非常有用。

基本概念

image

细看后,我们可以对其进行扩展,假如从未知或者很大样本空间随机地取k个数?

类比下即可得到答案,即先把前k个数放入蓄水池,对第k+1,我们以k/(k+1)概率决定是否要把它换入蓄水池,换入时随机的选取一个作为替换项,这样一直做下去,对于任意的样本空间n,对每个数的选取概率都为k/n。也就是说对每个数选取概率相等。

算法的正确证明

定理:该算法保证每个元素以 k / n 的概率被选入蓄水池数组。

证明:首先,对于任意的 i,第 i 个元素进入蓄水池的概率为 k / i;而在蓄水池内每个元素被替换的概率为 1 / k; 因此在第 i 轮第j个元素被替换的概率为 (k / i ) * (1 / k) = 1 / i。 接下来用数学归纳法来证明,当循环结束时每个元素进入蓄水池的概率为 k / n.

假设在 (i-1) 次迭代后,任意一个元素进入 蓄水池的概率为 k / (i-1)。有上面的结论,在第 i 次迭代时,该元素被替换的概率为 1 / i, 那么其不被替换的概率则为 1 - 1/i = (i-1)/i;在第i 此迭代后,该元素在蓄水池内的概率为 k / (i-1) * (i-1)/i = k / i. 归纳部分结束。

因此当循环结束时,每个元素进入蓄水池的概率为 k / n. 命题得证。

Java实现

import java.util.Arrays;  

import java.util.Random;  

public class ReservoirSamplingAlgorithm {  

public static void main(String[] args) {  

int k=10;  

int n=1000;  

int[] data=new int[n];  

for(int i=0;i

            data[i]=i;  

        }  

int[] result=reservoirSampling(data,k);  

        System.out.println(Arrays.toString(result));  

    }  

public static int[] reservoirSampling(int[] data,int k){  

if(data==null){  

return new int[0];  

        }  

if(data.length

return new int[0];  

        }  

int[] result=new int[k];  

int n=data.length;  

for(int i=0;i

if(i

result[i]=data[i];参考博客  

}else{  

int j=new Random().nextInt(i);  

if(j

                    result[j]=data[i];  

                }  

            }  

        }  

return result;  

    }  

}  

参考博客来源:参考博客

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容