环境装好了之后没有模型训练一下怎么行!
模型不能太大,太大好几天跑不完;模型也不能太小,太小体现不出来花大几千配的机器的性能。
推荐captcha验证码识别模型,大小正合适,下面贴完整代码,如果你的环境是按照我的说明搭的,可以直接跑。
第一个文件:capthca_model.py
#!/usr/bin/python
# -*- coding: utf-8 -*
import tensorflow.compat.v1 as tf
import math
class captchaModel():
def __init__(self,
width = 160,
height = 60,
char_num = 4,
classes = 62):
self.width = width
self.height = height
self.char_num = char_num
self.classes = classes
def conv2d(self,x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(self,x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(self,shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(self,shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def create_model(self,x_images,keep_prob):
#first layer
w_conv1 = self.weight_variable([5, 5, 1, 32])
b_conv1 = self.bias_variable([32])
h_conv1 = tf.nn.relu(tf.nn.bias_add(self.conv2d(x_images, w_conv1), b_conv1))
h_pool1 = self.max_pool_2x2(h_conv1)
h_dropout1 = tf.nn.dropout(h_pool1,keep_prob)
conv_width = math.ceil(self.width/2)
conv_height = math.ceil(self.height/2)
#second layer
w_conv2 = self.weight_variable([5, 5, 32, 64])
b_conv2 = self.bias_variable([64])
h_conv2 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout1, w_conv2), b_conv2))
h_pool2 = self.max_pool_2x2(h_conv2)
h_dropout2 = tf.nn.dropout(h_pool2,keep_prob)
conv_width = math.ceil(conv_width/2)
conv_height = math.ceil(conv_height/2)
#third layer
w_conv3 = self.weight_variable([5, 5, 64, 64])
b_conv3 = self.bias_variable([64])
h_conv3 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout2, w_conv3), b_conv3))
h_pool3 = self.max_pool_2x2(h_conv3)
h_dropout3 = tf.nn.dropout(h_pool3,keep_prob)
conv_width = math.ceil(conv_width/2)
conv_height = math.ceil(conv_height/2)
#first fully layer
conv_width = int(conv_width)
conv_height = int(conv_height)
w_fc1 = self.weight_variable([64*conv_width*conv_height,1024])
b_fc1 = self.bias_variable([1024])
h_dropout3_flat = tf.reshape(h_dropout3,[-1,64*conv_width*conv_height])
h_fc1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(h_dropout3_flat, w_fc1), b_fc1))
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#second fully layer
w_fc2 = self.weight_variable([1024,self.char_num*self.classes])
b_fc2 = self.bias_variable([self.char_num*self.classes])
y_conv = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2)
return y_conv
第二个文件,generate_captcha.py
# -*- coding: utf-8 -*
from captcha.image import ImageCaptcha
from PIL import Image
import numpy as np
import random
import string
class generateCaptcha():
def __init__(self,
width = 160,#验证码图片的宽
height = 60,#验证码图片的高
char_num = 4,#验证码字符个数
characters = string.digits + string.ascii_uppercase + string.ascii_lowercase):#验证码组成,数字+大写字母+小写字母
self.width = width
self.height = height
self.char_num = char_num
self.characters = characters
self.classes = len(characters)
def gen_captcha(self,batch_size = 50):
X = np.zeros([batch_size,self.height,self.width,1])
img = np.zeros((self.height,self.width),dtype=np.uint8)
Y = np.zeros([batch_size,self.char_num,self.classes])
image = ImageCaptcha(width = self.width,height = self.height)
while True:
for i in range(batch_size):
captcha_str = ''.join(random.sample(self.characters,self.char_num))
img = image.generate_image(captcha_str).convert('L')
img = np.array(img.getdata())
X[i] = np.reshape(img,[self.height,self.width,1])/255.0
for j,ch in enumerate(captcha_str):
Y[i,j,self.characters.find(ch)] = 1
Y = np.reshape(Y,(batch_size,self.char_num*self.classes))
yield X,Y
def decode_captcha(self,y):
y = np.reshape(y,(len(y),self.char_num,self.classes))
return ''.join(self.characters[x] for x in np.argmax(y,axis = 2)[0,:])
def get_parameter(self):
return self.width,self.height,self.char_num,self.characters,self.classes
def gen_test_captcha(self):
image = ImageCaptcha(width = self.width,height = self.height)
captcha_str = ''.join(random.sample(self.characters,self.char_num))
img = image.generate_image(captcha_str)
img.save(captcha_str + '.jpg')
if __name__ == '__main__':
g = generateCaptcha()
g.gen_test_captcha()
第三个文件:
train_captcha.py
#!/usr/bin/python
import tensorflow.compat.v1 as tf
tf.disable_eager_execution()
import numpy as np
import string
import os
import demo1.generate_captcha as generate_captcha
import demo1.captcha_model as captcha_model
tf.device('/GPU:0')
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
if __name__ == '__main__':
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
captcha = generate_captcha.generateCaptcha()
width, height, char_num, characters, classes = captcha.get_parameter()
x = tf.placeholder(tf.float32, [None, height, width, 1])
y_ = tf.placeholder(tf.float32, [None, char_num * classes])
keep_prob = tf.placeholder(tf.float32)
model = captcha_model.captchaModel(width, height, char_num, classes)
y_conv = model.create_model(x, keep_prob)
cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
predict = tf.reshape(y_conv, [-1, char_num, classes])
real = tf.reshape(y_, [-1, char_num, classes])
correct_prediction = tf.equal(tf.argmax(predict, 2), tf.argmax(real, 2))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = next(captcha.gen_captcha(64))
_, loss = sess.run([train_step, cross_entropy], feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.75})
print('step:%d,loss:%f' % (step, loss))
if step % 100 == 0:
batch_x_test, batch_y_test = next(captcha.gen_captcha(100))
acc = sess.run(accuracy, feed_dict={x: batch_x_test, y_: batch_y_test, keep_prob: 1.})
print('###############################################step:%d,accuracy:%f' % (step, acc))
if acc > 0.99:
saver.save(sess, "capcha_model.ckpt")
break
step += 1
对于这个模型,它调用的api完全是tensorflow1.*版本的api,所以导入包的时候有个细节:
import tensorflow.compat.v1 as tf
下一篇文章我将把模型用tensorflow2.0.0版本重新搭一个,感受感受新版本的api。
这个模型就是简单的CNN模型,三个卷积层,两个全连接层。除了最后一个全连接层,其他4个层都有dropout防止过拟合。
模型在跑的时候,gpu显存沾满了,但是gpu利用率超级低。我也不知道是配置问题,还是模型计算量并不大的原因。先留个坑,等我能解释了,回来再补充。
image.png