lecture 5

Class Project requirements

  • system architecture
    -get the data(through users interaction) and use creatively
  • features
    -challenging language, not English
    -or anything else that require tagging or other deeper NLP technics

There should be something new, like getting data with system or other languages or deeper NLP technics or things not being touched in the class.

Assignments

  • See Sakai wiki and assignments, they're different.
  • Due in two weeks

Topic modeling

  • LatentDirichletAllocation
    -documents --> topics: document distribution over topics, mixture of topics(latent variable, abstract learned representation)
    -topics --> words: distribution over words
    -topics: link to documents and words

  • These models are expensive to implement.

  • Algorithm
    -randomly assign words to topics
    -what topics are associated with documents? (words are in documents, not clear)
    -optimization: variational MCMC

  • Python package
    -sklearn. LatentDirichletAllocation

  • Resources
    -LatentDirichletAllocation tutorial
    -Variational MCMC
    He didn't go through the details as usual.

Tagging as classification

  • How the START and END token effect the model and when to use them??

  • Looking for patterns that generalize: identity of word at a given position, shape of word(-tion, -al) and distributional features

  • Something about data processing mentioned in the class:
    -Given tokenized data, e.g 3 sentences:
    [1,2,3,4]
    [5,6,7,8]
    [9,10,11,12,13]
    -Adding up START and END token and wrapping target word with context words, length=5:
    [S, S, 1, 2, 3]
    [S, 1, 2, 3, 4]
    [1, 2, 3, 4, 5]
    ...
    [11, 12, 13, E, E]

  • Features defined in a way like rules for patterns among words: like feature_1 = [previous word = 'the']

  • Applying linear classification on the encoded words matrix.

  • Optimization: SGD

Combining search and learning

  • Graphical Model for Sequence Tagging
    We have tag for each word in a sequence:
    e.g.
    -PRON VERB PRT VERB. --> P(T_{i-1} | T_i) -- (1)
    -They refuse to permit. --> P(W_i | T_i) -- (2)
    -There are strong independence assumption among words. The previous word doesn't help.(This is not right)
    -How to get those probabilities: count.
    -unseen sequence, have to smooth the model

  • Algorithm
    -Add up START and END token to a sentence.
    -Find probability of tag sequence that might have generated word sequence(conditional probability).
    -ML of tag sequence: P(C | W, C_0, C_{n+1}), where C_0: START, C_{n+1}: END, W: word sequence, C: sequence of tags.
    e.g. Following the example above: get P(SPVPVE, words), using equation (1) and (2), then apply bayes rule to get likelihood, P(SPVPVE) = prod{P(T_{i} | T_{i-1})} for all i.

  • Thinking:
    Find all the tag sequences in a document, count and order them from high frequency to low frequency, what's the differences? Same overfitting problem with ML? Does beam search help?

  • Conclusion:
    There is no learning in this model, but the probability extracted from corpus can be interpreted as weights. Because, basically, we need scores to search(ML). But there's no features, so no learning.

  • Improvement?
    Define features.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,442评论 0 23
  • php5.6新特性 参考 使用表达式定义常量,使用const定义常量数组 使用 ... 运算符定义变长参数函数 使...
    code_nerd阅读 326评论 0 0
  • 早上磨到蛮晚起来都没有洗刷,所以就没跟着你去公司,其实也是我自己不想去,个中原因大概只有自己知道吧。 晚上跟着你去...
    风花微凉阅读 177评论 0 0
  • http://mt.sohu.com/20150603/n414349613.shtml 科普一分钟:USB T...
    靖兰亭阅读 463评论 0 49