推荐算法个人感想

1.在我们逛淘宝,亚马逊,今日头条的时候,往往你在买了一件东西以后,亚马逊和淘宝都会给你推荐相似性的一些物品,今日头条在你点击对关于老司机的帖子感兴趣的时候,就会把关于老司机的帖子推荐给你,这是很有意思的。
2.推荐就分为了基于人的推荐和基于物品的推荐,基于物品的推荐就类似于我第一条写的东西,当你购买一件物品或者点击一条新闻的时候,就会推荐给你类似的东西。现在我们来谈谈关于人的推荐,协作型推荐。当你想看一部电影的时候,最简单的方式是什么呢?可以去豆瓣上面看一看评分?如果没有网怎么办,那就吃饭的时候咨询一下旁边的朋友呗,如果你俩对一部或者多部已经看过的影片聊得很来,那么他推荐给你的影片你有很大的可能性也爱看,这就是我们基于人的推荐,根据兴趣差不多的人来看看他们还看过一些其他什么样的影片,把他们觉得口碑很好的影片可以排个序,然后将最顶的影片推荐给用户就行了。
3.那么上面的过程是我们自己根据经验来推想的场景,那么应该怎么用计算机语言还有数学来描述这种现况呢?下面我们就来讲解一下,我们有一些数据,其中记录了一些用户对影片的评分,那么我们怎么来衡量,哪些用户会有一些比较相同的爱好呢?所以,为了解决这个问题我们又提出来了两个方法来衡量这个问题,也就是来描述这个问题,其中一个叫做欧几里得距离,另外一个叫做皮尔逊相关系数。通过两个数学方法来描述这个问题。
4.欧几里得距离,我忘了我们是在初中还是高中学习过这个问题,不过我们当时学习的是二维的,相信大家肯定也学习过,在一个二维的坐标系中,我们想要衡量两个点的相距的距离,应该怎么计算呢?应该是d=√[(x1-x2)²+(y1-y2)²],这是二维坐标系中的距离计算方法。刚刚我们知道我们现在的数据中里面是一个dict然后里面是人名对应另外一个dict(电影对象:评分),我们将里面不同电影称之为特征,然后我们就可以将其抽象成数据的维度,当然我们在初中或者高中的时候学过的只是最简单的二维调用,所以我们可以将上述公式进行扩展,维度之间进行相减之后然后求根,这就变成了我们现在的欧几里得距离的扩展计算,适应于多个维度之间的计算。这里面的话所对应的维度当然要相同,什么叫做所对应的维度要相同呢?也就是对相同的电影进行判断,而不是对应的顺序来进行判断。

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 16 09:16:32 2016

@author: zhangxu
"""

critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 
 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 
 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 
 'You, Me and Dupree': 3.5}, 
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
 'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
 'The Night Listener': 4.5, 'Superman Returns': 4.0, 
 'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 
 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 2.0}, 
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

from math import sqrt

def calculateDistance(datas,person1,person2):
    person1MovieDataSet = datas[person1]
    person2MovieDataSet = datas[person2]
    commonMovieNames = []
    for movieName in person1MovieDataSet:
        if movieName in person2MovieDataSet:
            commonMovieNames.append(movieName)
    if(len(commonMovieNames) == 0):
        return 0
    sum = 0.0
    for movieName in commonMovieNames:
        sum += pow(datas[person1][movieName] - datas[person2][movieName],2)
    return 1/(1+sqrt(sum))
//给用户进行打分,选择推荐值最近的用户
def topMatch(datas,other,top=1,fun=calculateDistance):
    scores = [(fun(datas,person,other),person) for person in datas if person != other]
    scores.sort()
    scores.reverse()    
    return scores[0:top]
print topMatch(critics,'Lisa Rose',3)
print calculateDistance(critics,'Lisa Rose','Gene Seymour')
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容