android源码学习目录
目录
介绍
Android init进程是Android系统中用户空间的第一个进程,他有极多工作,例如启动属性服务器和启动Zygote进程,init进程由多个源码组成,位于system/core/init文件夹中。
一:Init进程启动前的准备
Android系统启动过程:介绍了init进程前是linux内核启动,后会寻找init.rc文件进行加载,这时并没有对init.rc进行解析。后启动init进程。
二:Init进程
Iinit进程做了很多工作,主要用来初始化和启动属性服务器,并启动Zygote(孵化器)进程
2.1:init进程的入口函数
/**
* Android 8.0 init进程main函数
**/
int main(int argc, char** argv) {
if (!strcmp(basename(argv[0]), "ueventd")) {
return ueventd_main(argc, argv); //根据参数启动ueventd,关于硬件设备
}
if (!strcmp(basename(argv[0]), "watchdogd")) {
return watchdogd_main(argc, argv); //根据参数启动watchdogd,关于程序监控
}
if (REBOOT_BOOTLOADER_ON_PANIC) {
install_reboot_signal_handlers(); //若是紧急启动则安装对应的消息处理器
}
add_environment("PATH", _PATH_DEFPATH); //添加环境变量
bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);//获取环境变量是否第一次启动
if (is_first_stage) { //第一次开启手机
/*************init的第一个阶段*********/
/* 用户为root用户
* 1>创建文件系统目录并挂载相关文件系统
* 2>重定向输入输出内核log系统
* 3>挂载一些分区设备
* 4>完成SELinux相关工作
* 5>重新启动init进程
*/
boot_clock::time_point start_time = boot_clock::now(); //用于记录启动时间
// Clear the umask.
umask(0); //清除屏蔽字,保证新建的目录访问权限不受屏蔽影响
// Get the basic filesystem setup we need put together in the initramdisk
// on / and then we'll let the rc file figure out the rest.
mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); //挂载tmpfs文件系统
mkdir("/dev/pts", 0755);
mkdir("/dev/socket", 0755);
mount("devpts", "/dev/pts", "devpts", 0, NULL); //挂载devpts文件系统
#define MAKE_STR(x) __STRING(x)
mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); //挂载proc文件系统
// Don't expose the raw commandline to unprivileged processes.
chmod("/proc/cmdline", 0440); //改变收紧cmdline目录权限,8.0新增
gid_t groups[] = { AID_READPROC };
setgroups(arraysize(groups), groups); //增加一个用户组,8.0新增
mount("sysfs", "/sys", "sysfs", 0, NULL); //挂载sysfs文件系统
mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL); //挂载selinuxfs,8.0新增
mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)); //提前创建kmsg设备节点,用于输出log
mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));
mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));
// Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
// talk to the outside world...
InitKernelLogging(argv); //在android内核中重定向输入输出log系统
LOG(INFO) << "init first stage started!";
if (!DoFirstStageMount()) { //挂载特定的分区设备
LOG(ERROR) << "Failed to mount required partitions early ...";
panic(); //挂载不成功,panic尝试reboot
}
SetInitAvbVersionInRecovery();
// Set up SELinux, loading the SELinux policy.
selinux_initialize(true); //初始化SELinux,
// We're in the kernel domain, so re-exec init to transition to the init domain now
// that the SELinux policy has been loaded.
if (restorecon("/init") == -1) { //按selinux policy要求,重新设置init文件属性
PLOG(ERROR) << "restorecon failed";
security_failure(); //设置失败reboot
}
setenv("INIT_SECOND_STAGE", "true", 1); //第一次启动必要的设置已经完成,
static constexpr uint32_t kNanosecondsPerMillisecond = 1e6;
uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond;
setenv("INIT_STARTED_AT", StringPrintf("%" PRIu64, start_ms).c_str(), 1); //记录初始化时的时间
char* path = argv[0];
char* args[] = { path, nullptr };
execv(path, args); //再次执行init的main函数,这次init进程为用户状态,不在需要创建各种系统
// execv() only returns if an error happened, in which case we
// panic and never fall through this conditional.
PLOG(ERROR) << "execv(\"" << path << "\") failed";
security_failure(); //重新执行init的main函数失败,重启reboot
}
/***************init第二阶段,重启后用户为user********************/
/* 1>重定向输入输出kernel log系统给
* 2>初始化属性服务器, 重要
* 3>清除用过的环境变量
* 4>完成SELinux相关工作
* 5>创建epoll句柄
* 6>装载子进程信号处理器
* 7>启动属性服务器
* 8>匹配命令和函数之间的对应关系。
*/
// At this point we're in the second stage of init.
InitKernelLogging(argv); //屏蔽标准的输入输出,并重定向输入输出kernel log系统
LOG(INFO) << "init second stage started!";
// Set up a session keyring that all processes will have access to. It
// will hold things like FBE encryption keys. No process should override
// its session keyring.
keyctl(KEYCTL_GET_KEYRING_ID, KEY_SPEC_SESSION_KEYRING, 1); //设置安全相关的值。
// Indicate that booting is in progress to background fw loaders, etc.
close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
property_init(); //1 初始化属性服务器
// If arguments are passed both on the command line and in DT,
// properties set in DT always have priority over the command-line ones.
process_kernel_dt();
process_kernel_cmdline(); //处理内核命令
// Propagate the kernel variables to internal variables
// used by init as well as the current required properties.
export_kernel_boot_props();
// Make the time that init started available for bootstat to log.
property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));
property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));
// Set libavb version for Framework-only OTA match in Treble build.
const char* avb_version = getenv("INIT_AVB_VERSION");
if (avb_version) property_set("ro.boot.avb_version", avb_version);
// Clean up our environment. //清空环境变量
unsetenv("INIT_SECOND_STAGE");
unsetenv("INIT_STARTED_AT");
unsetenv("INIT_SELINUX_TOOK");
unsetenv("INIT_AVB_VERSION");
// Now set up SELinux for second stage.
selinux_initialize(false);
selinux_restore_context(); //再次完成SELinux的相关工作
epoll_fd = epoll_create1(EPOLL_CLOEXEC); //创建epoll句柄
if (epoll_fd == -1) {
PLOG(ERROR) << "epoll_create1 failed";
exit(1);
}
signal_handler_init(); //装在子进程信号处理器
property_load_boot_defaults(); //进行默认的属性配置相关工作
export_oem_lock_status(); //最终决定ro.boot.fllash.locked的值
start_property_service(); //2 启动属性服务器
set_usb_controller();
//匹配命令和函数之间的对应关系
const BuiltinFunctionMap function_map; //system/core/init/builtins.cpp,定义Action中的function_map为BuiltinFuntionMap
Action::set_function_map(&function_map); //在Action中保存的function_map队形,记录了命令和函数之间的关系
/****************init第三阶段************************/
/* 1>>构建解析init.rc等文件的解析器对象
* 2>解析init.rc文件
*/
Parser& parser = Parser::GetInstance(); //构建解析init.rc等文件的解析器对象
//为解析器增加解析能力,增加一个ServiceParser对应Serrvice,on对应ActionParser,import--importParse
parser.AddSectionParser("service",std::make_unique<ServiceParser>());
parser.AddSectionParser("on", std::make_unique<ActionParser>());
parser.AddSectionParser("import", std::make_unique<ImportParser>());
std::string bootscript = GetProperty("ro.boot.init_rc", ""); //判断bootScript是否存在
if (bootscript.empty()) {
parser.ParseConfig("/init.rc"); //解析init.rc文件
parser.set_is_system_etc_init_loaded(
parser.ParseConfig("/system/etc/init"));
parser.set_is_vendor_etc_init_loaded(
parser.ParseConfig("/vendor/etc/init"));
parser.set_is_odm_etc_init_loaded(parser.ParseConfig("/odm/etc/init"));
} else {
parser.ParseConfig(bootscript); //如果存在bootscript则解析
parser.set_is_system_etc_init_loaded(true);
parser.set_is_vendor_etc_init_loaded(true);
parser.set_is_odm_etc_init_loaded(true);
}
// Turning this on and letting the INFO logging be discarded adds 0.2s to
// Nexus 9 boot time, so it's disabled by default.
if (false) parser.DumpState();
/******************init进程第四阶段***********************/
/* 1>通过am对命令执行顺序进行控制
* 2>向am中添加执行action
* 3>执行命令
*/
ActionManager& am = ActionManager::GetInstance();
am.QueueEventTrigger("early-init"); //添加触发器early-init,执行on early-init内容
// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
// ... so that we can start queuing up actions that require stuff from /dev.
am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
am.QueueBuiltinAction(set_mmap_rnd_bits_action, "set_mmap_rnd_bits");
am.QueueBuiltinAction(set_kptr_restrict_action, "set_kptr_restrict");
am.QueueBuiltinAction(keychord_init_action, "keychord_init");
am.QueueBuiltinAction(console_init_action, "console_init");
// Trigger all the boot actions to get us started.
am.QueueEventTrigger("init"); //添加触发器init,执行on init内容
// Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
// wasn't ready immediately after wait_for_coldboot_done
am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
// Don't mount filesystems or start core system services in charger mode.
std::string bootmode = GetProperty("ro.bootmode", "");
if (bootmode == "charger") {
am.QueueEventTrigger("charger"); //充电模式下运行 on charger
} else {
am.QueueEventTrigger("late-init"); //非充电模式下运行 on late-init
}
// Run all property triggers based on current state of the properties.
am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
while (true) {
// By default, sleep until something happens.
int epoll_timeout_ms = -1;
if (!(waiting_for_prop || ServiceManager::GetInstance().IsWaitingForExec())) {
am.ExecuteOneCommand(); //依次执行action中的command
}
if (!(waiting_for_prop || ServiceManager::GetInstance().IsWaitingForExec())) {
restart_processes(); // 重启一些挂掉的进程
// If there's a process that needs restarting, wake up in time for that.
if (process_needs_restart_at != 0) {
epoll_timeout_ms = (process_needs_restart_at - time(nullptr)) * 1000;
if (epoll_timeout_ms < 0) epoll_timeout_ms = 0; // 有action待处理,不等待
}
// If there's more work to do, wake up again immediately.
if (am.HasMoreCommands()) epoll_timeout_ms = 0;
}
epoll_event ev;
int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));
if (nr == -1) {
PLOG(ERROR) << "epoll_wait failed";
} else if (nr == 1) {
//有事件到来,执行对应处理函数
//根据上文知道,epoll句柄(即epoll_fd)主要监听子进程结束,及其它进程设置系统属性的请求
((void (*)()) ev.data.ptr)();
}
}
return 0;
}
init main函数做了很多工作比较复杂,在开始时进行了文件系统的创建和挂载,对于一个系统我们不需要了解那么详细,我们只需要关注几点就可以了。
- init进程--属性服务器
- init进程--init.rc解析与zynote进程启动
- signal_handler_init()函数用于设置子进程,定义在system/core/init/signale_handler.cpp中,主要用于防止init进程的子进程成为僵尸进程, 当子进程暂停或者终止会发出SIGCHLD信号,signal_handler_init函数会接受这个信号.
eg:如果init进程的子进程zynote进程终止了,signal_handler_init函数会收到终止信号,并找到zynote进程,移除所有zynote进程的所有消息,在根据配置(是否需要重启)重启zynote进程。