二叉树系列之BST

什么是BST?

1. 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;

2. 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;

3. 它的左右子树也分别为二叉排序树。

二叉排序树的数据排序方式为 [左孩子节点 < 根节点 < 右孩子节点],左子树和父节点值最接近的节点为最靠右的节点,右子树和父节点值最接近的点为最靠左的点。

如下图所示:

BST

BST的java代码实现:包含基础的 插入 删除 查找


public class BinarySearchTree{

    private Node root;

    private int size;

    public BinarySearchTree(Node root){

        this.root=root;

        size++;

    }

    public int getSize(){

        return this.size;

    }

    public boolean contains(Name name){

        return contains(name,this.root);

        //return false;

    }

    private boolean contains(Name n,Node root){

        if(root==null){

            return false;

        }

        int compare=n.compareTo(root.element);

        if(compare>0){

            if(root.right!=null){

                return contains(n,root.right);

            }else{

                return false;

            }

        }else if(compare<0){

            if(root.left!=null){

                return contains(n,root.left);

            }else{

                return false;

            }

        }else{

            return true;

        }

    }

    public boolean insert(Name n){

        boolean flag = insert(n,this.root);

        if(flag) size++;

        return flag;

    }

    private boolean insert(Name n,Node root){

        if(root==null){

            this.root=new Node(n);

            return true;

        }else if(root.element.compareTo(n)>0){

            if(root.left!=null){

                return insert(n,root.left);

            }else{

                root.left=new Node(n);

                return true;

            }

        }else if(root.element.compareTo(n)<0){

            if(root.right!=null){

                return insert(n,root.right);

            }else{

                root.right=new Node(n);

                return true;

            }

        }else{

            root.frequency++;

            return true;

        }

    }

    public boolean remove(Name name){

        root = remove(name,this.root);

        if(root != null){

            size--;

            return true;

        }

        return false;

    }

    private Node remove(Name name,Node root){

        int compare = root.element.compareTo(name);

        if(compare == 0){

            if(root.frequency>1){

                root.frequency--;

            }else{

                /**根据删除节点的类型,分成以下几种情况

                **①如果被删除的节点是叶子节点,直接删除

                **②如果被删除的节点含有一个子节点,让指向该节点的指针指向他的儿子节点

                **③如果被删除的节点含有两个子节点,找到左字数的最大节点,并替换该节点

                **/

                if(root.left == null && root.right == null){

                    root = null;

                }else if(root.left !=null && root.right == null){

                    root = root.left;

                }else if(root.left == null && root.right != null){

                    root = root.right;

                }else{

                    //被删除的节点含有两个子节点

                    Node newRoot = root.left;

                    while (newRoot.left != null){

                        newRoot = newRoot.left;//找到左子树的最大节点

                    }

                    root.element = newRoot.element;

                    root.left = remove(root.element,root.left);

                }

            }

        }else if(compare > 0){

            if(root.left != null){

                root.left = remove(name,root.left);

            }else{

                return null;

            }

        }else{

            if(root.right != null){

                root.right = remove(name,root.right);

            }else{

                return null;

            }

        }

        return root;

    }

    public String toString(){

        //中序遍历就可以输出树中节点的顺序

        return toString(root);

    }

    private String toString(Node n){

        String result = "";

        if(n != null){

            if(n.left != null){

                result += toString(n.left);

            }

            result += n.element + " ";

            if(n.right != null){

                result += toString(n.right);

            }

        }

        return result;

    }

}

Node 和 辅助类 Name的相关实现:

class Node{
    public Name element;
    public Node left;
    public Node right;
    public int frequency = 1;
     
    public Node(Name n){
        this.element=n;
    }
}
 
class Name implements Comparable<Name>{
    private String firstName;
    private String lastName;
     
    public Name(String firstName,String lastName){
        this.firstName=firstName;
        this.lastName=lastName;
    }
     
    public int compareTo(Name n) {
        int result = this.firstName.compareTo(n.firstName);
        return result==0?this.lastName.compareTo(n.lastName):result;
    }
     
    public String toString(){
        return firstName + "-" +lastName;
    }
}

BST的 前序 ,中序 ,后续,层序的遍历方式都在之前的二叉树中有对应的实现

详情请看二叉树初探

功能测试:

public static void main(String[] args){
        //System.out.println("sunlunqian");
        Node root = new Node(new Name("sun","lunqian5"));
        BinarySearchTree bst =new BinarySearchTree(root);
        bst.insert(new Name("sun","lunqian3"));
        bst.insert(new Name("sun","lunqian7"));
        bst.insert(new Name("sun","lunqian2"));
        bst.insert(new Name("sun","lunqian4"));
        bst.insert(new Name("sun","lunqian6"));
        bst.insert(new Name("sun","8"));
        System.out.println(bst);
        bst.remove(new Name("sun","lunqian2"));
        System.out.println(bst);
        bst.remove(new Name("sun","lunqian7"));
        System.out.println(bst);
}

结果输出:

sun-lunqian2 sun-lunqian3 sun-lunqian4 sun-lunqian5 sun-lunqian6 sun-lunqian7 sun-lunqian8 
sun-lunqian3 sun-lunqian4 sun-lunqian5 sun-lunqian6 sun-lunqian7 sun-lunqian8 
sun-lunqian3 sun-lunqian4 sun-lunqian5 sun-lunqian6 sun-lunqian8
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容