KNN算法应用于约会网站配对

本文学习自@jack cui,原文地址如下:

http://cuijiahua.com/blog/2017/11/ml_1_knn.html

KNN算法的一般处理流程:

  • 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
  • 准备数据:使用Python解析、预处理数据。
  • 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
  • 测试算法:计算错误率。
  • 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。
    (注:这好像适用于绝大多数的数据处理挖掘过程)
    实验采用数据地址到这里
    实验代码如下:
from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import numpy as np
 
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
 
Parameters:
    filename - 文件名
Returns:
    returnMat - 特征矩阵
    classLabelVector - 分类Label向量
 
Modify:
    2017-03-24
"""
def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayOLines = fr.readlines()
    #得到文件行数
    numberOfLines = len(arrayOLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayOLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFromLine = line.split('\t')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]
        #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector
 
"""
函数说明:可视化数据
 
Parameters:
    datingDataMat - 特征矩阵
    datingLabels - 分类Label
Returns:
    无
Modify:
    2017-03-24
"""
def showdatas(datingDataMat, datingLabels):
    #设置汉字格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
    #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))
 
    numberOfLabels = len(datingLabels)
    LabelsColors = []
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
    axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)
    plt.setp(axs0_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')
 
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
    axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs1_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')
 
    #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
    axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
    axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs2_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
    #设置图例
    didntLike = mlines.Line2D([], [], color='black', marker='.',
                      markersize=6, label='didntLike')
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',
                      markersize=6, label='smallDoses')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',
                      markersize=6, label='largeDoses')
    #添加图例
    axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
    #显示图片
    plt.show()
 
"""
函数说明:main函数
 
Parameters:
    无
Returns:
    无
 
Modify:
    2017-03-24
"""
if __name__ == '__main__':
    #打开的文件名
    filename = "datingTestSet.txt"
    #打开并处理数据
    datingDataMat, datingLabels = file2matrix(filename)
    showdatas(datingDataMat, datingLabels)

数据可视化效果如下:


下载.png

下面我们就可以给海伦一段程序,只要男方在网站上面输入以下内容

玩视频游戏所耗时间百分比
每年获得的飞行常客里程数
每周消费的冰激淋公升数

这个程序就能推测出海伦大致喜欢这个人的程度。
完整程序如下:

from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import numpy as np
import operator

def classify0(inX, dataSet, labels, k):
    #numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    #二维特征相减后平方
    sqDiffMat = diffMat**2
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances = sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances = sqDistances**0.5
    #返回distances中元素从小到大排序后的索引值
    sortedDistIndices = distances.argsort()
    #定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        #取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        #计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    #python3中用items()替换python2中的iteritems()
    #key=operator.itemgetter(1)根据字典的值进行排序
    #key=operator.itemgetter(0)根据字典的键进行排序
    #reverse降序排序字典
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]
 
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
 
Parameters:
    filename - 文件名
Returns:
    returnMat - 特征矩阵
    classLabelVector - 分类Label向量
 
Modify:
    2017-03-24
"""
def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayOLines = fr.readlines()
    #得到文件行数
    numberOfLines = len(arrayOLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayOLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFromLine = line.split('\t')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]
        #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = np.zeros(np.shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    return normDataSet, ranges, minVals
"""
函数说明:分类器测试函数
 
Parameters:
    无
Returns:
    normDataSet - 归一化后的特征矩阵
    ranges - 数据范围
    minVals - 数据最小值
 
Modify:
    2017-03-24
"""
def datingClassTest():
    filename = "datingTestSet.txt"
    datingDataMat, datingLabels = file2matrix(filename)
    hoRatio = 0.10
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m * hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
            datingLabels[numTestVecs:m], 4)
        print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
        if classifierResult != datingLabels[i]:
            errorCount += 1.0
    print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
       
 
"""
函数说明:可视化数据
 
Parameters:
    datingDataMat - 特征矩阵
    datingLabels - 分类Label
Returns:
    无
Modify:
    2017-03-24
"""
def showdatas(datingDataMat, datingLabels):
    #设置汉字格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
    #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))
 
    numberOfLabels = len(datingLabels)
    LabelsColors = []
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
    axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)
    plt.setp(axs0_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')
 
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
    axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs1_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')
 
    #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
    axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
    axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs2_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
    #设置图例
    didntLike = mlines.Line2D([], [], color='black', marker='.',
                      markersize=6, label='didntLike')
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',
                      markersize=6, label='smallDoses')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',
                      markersize=6, label='largeDoses')
    #添加图例
    axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
    #显示图片
    plt.show()
    
def classifyPerson():
    resultList = ['讨厌','有些喜欢','非常喜欢']
    precentTats = float(input("玩视频游戏所耗时间百分比:"))
    ffMiles = float(input("每年获得的飞行常客里程数:"))
    iceCream = float(input("每周消费的冰激淋公升数:"))
    filename = "datingTestSet.txt"
    datingDataMat, datingLabels = file2matrix(filename)
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = np.array([ffMiles, precentTats, iceCream])
    norminArr = (inArr - minVals) / ranges
    classifierResult = classify0(norminArr, normMat, datingLabels, 3)
    print("你可能%s这个人" % (resultList[classifierResult-1]))
 
"""
函数说明:main函数
 
Parameters:
    无
Returns:
    无
 
Modify:
    2017-03-24
"""
if __name__ == '__main__':
    classifyPerson()

测试一波:

玩视频游戏所耗时间百分比:2.3
每年获得的飞行常客里程数:0
每周消费的冰激淋公升数:1.4
你可能有些喜欢这个人

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容