跟着Nature Biotechnology学作图:R语言pca分析并使用ggplot2可视化结果

论文

Removing unwanted variation from large-scale RNA sequencing data with PRPS

https://www.nature.com/articles/s41587-022-01440-w#data-availability

数据链接

https://zenodo.org/record/6459560#.Y2D2NHZBzid

https://zenodo.org/record/6392171#.Y2D2SXZBzid

代码链接

https://github.com/RMolania/TCGA_PanCancer_UnwantedVariation

今天推文重复的图没有出现在论文中,是论文中提供的代码里的一个图

image.png

但是没有能够重复出来论文中用到的作图数据,所以这里用R语言自带的鸢尾花数据集来演示

首先是论文中提供的两个自定义函数,一个是用来做主成分分析的pca,

.pca <- function(data, is.log) {
  if (is.log)
    data <- data
  else
    data <- log2(data + 1)
  svd <- base::svd(scale(
    x = t(data),
    center = TRUE,
    scale = FALSE
  ))
  percent <- svd$d ^ 2 / sum(svd$d ^ 2) * 100
  percent <-
    sapply(seq_along(percent),
           function(i) {
             round(percent[i], 1)
           })
  return(list(
    sing.val = svd,
    variation = percent))
}

一个是用来作图展示结果的
用到了ggplot2 ggpubr 和 cowplot 包

.scatter.density.pc <- function(
  pcs, 
  pc.var, 
  group.name, 
  group, 
  color, 
  strokeSize, 
  pointSize, 
  strokeColor,
  alpha,
  title
){
  pair.pcs <- utils::combn(ncol(pcs), 2)
  pList <- list()
  for(i in 1:ncol(pair.pcs)){
    if(i == 1){
      x <- pair.pcs[1,i]
      y <- pair.pcs[2,i]
      p <- ggplot(mapping = aes(
        x = pcs[,x], 
        y = pcs[,y], 
        fill = group)) +
        xlab(paste0('PC', x, ' (', pc.var[x], '%)')) +
        ylab(paste0('PC', y, ' (', pc.var[y], '%)')) +
        geom_point(
          aes(fill = group), 
          pch = 21, 
          color = strokeColor, 
          stroke = strokeSize, 
          size = pointSize,
          alpha = alpha) +
        scale_x_continuous(breaks = scales::pretty_breaks(n = 5)) +
        scale_y_continuous(breaks = scales::pretty_breaks(n = 5)) +
        ggtitle(title) +
        theme(
          legend.position = "right",
          panel.background = element_blank(), 
          axis.line = element_line(colour = "black", size = 1.1),
          legend.background = element_blank(),
          legend.text = element_text(size = 12),
          legend.title = element_text(size = 14),
          legend.key = element_blank(),
          axis.text.x = element_text(size = 10),
          axis.text.y = element_text(size = 10),
          axis.title.x = element_text(size = 14),
          axis.title.y = element_text(size = 14)) +
        guides(fill = guide_legend(override.aes = list(size = 4))) + 
        scale_fill_manual(name = group.name, values = color)
      
      le <- ggpubr::get_legend(p)
    }else{
      x <- pair.pcs[1,i]
      y <- pair.pcs[2,i]
      p <- ggplot(mapping = aes(
        x = pcs[,x], 
        y = pcs[,y], 
        fill = group)) +
        xlab(paste0('PC', x, ' (',pc.var[x],  '%)')) +
        ylab(paste0('PC', y, ' (',pc.var[y], '%)')) +
        geom_point(
          aes(fill = group), 
          pch = 21, 
          color = strokeColor, 
          stroke = strokeSize,
          size = pointSize,
          alpha = alpha) +
        scale_x_continuous(breaks = scales::pretty_breaks(n = 5)) +
        scale_y_continuous(breaks = scales::pretty_breaks(n = 5)) +
        theme(
          panel.background = element_blank(), 
          axis.line = element_line(colour = "black", size = 1.1),
          legend.position = "none",
          axis.text.x = element_text(size = 10),
          axis.text.y = element_text(size = 10),
          axis.title.x = element_text(size = 14),
          axis.title.y = element_text(size = 14)) +
        scale_fill_manual(values = color, name = group.name)
    }
    p <- p + theme(legend.position = "none")
    xdens <- cowplot::axis_canvas(p, axis = "x")+
      geom_density(
        mapping = aes(
          x = pcs[,x], 
          fill = group),
        alpha = 0.7, 
        size = 0.2
      ) +
      theme(legend.position = "none") +
      scale_fill_manual(values = color)
    
    ydens <- cowplot::axis_canvas(
      p, 
      axis = "y", 
      coord_flip = TRUE) +
      geom_density(
        mapping = aes(
          x = pcs[,y],
          fill = group),
        alpha = 0.7,
        size = 0.2) +
      theme(legend.position = "none") +
      scale_fill_manual(name = group.name, values = color) +
      coord_flip()
    
    p1 <- insert_xaxis_grob(
      p,
      xdens,
      grid::unit(.2, "null"),
      position = "top"
    )
    p2 <- insert_yaxis_grob(
      p1,
      ydens,
      grid::unit(.2, "null"),
      position = "right"
    )
    pList[[i]] <- ggdraw(p2)
  }
  pList[[i+1]] <- le
  return(pList)
}

这两个自定义函数在函数名前都加了一个点,暂时不知道加这个点和不加有什么区别,将这两个函数放到一个文件里

source("pca_and_ggplot2.R")

library(ggplot2)
library(ggpubr)
library(cowplot)

pca.ncg<-.pca(data = iris[,1:4],
              is.log = FALSE)
.scatter.density.pc(pcs = pca.ncg$sing.val$v[, 1:3],
                    pc.var = pca.ncg$variation,
                    strokeColor = 'gray30',
                    strokeSize = .2,
                    pointSize = 2,
                    alpha = .6,
                    title = "A",
                    group.name = "B",
                    group=iris$Species,
                    color=c("red","blue","green")) -> p

do.call(
  gridExtra::grid.arrange,
  c(p,ncol=4))
image.png

这里自定义的pca结果可视化函数参数还挺多的,这里就不逐个介绍了,争取抽时间录制成视频介绍,敬请期待

示例数据和代码可以给推文点赞 点击在看 最后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,809评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,189评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,290评论 0 359
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,399评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,425评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,116评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,710评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,629评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,155评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,261评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,399评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,068评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,758评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,252评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,381评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,747评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,402评论 2 358

推荐阅读更多精彩内容