Zinx源代码
github
https://github.com/aceld/zinx
gitee码云
https://gitee.com/Aceld/zinx
在线开发教程
【B站】
zinx视频教程-Golang轻量级TCP服务器框架-适合自学者
【YouTube】
zinx开发YouTube中国版
【Zinx教程目录】
完整教程电子版(在线高清)-下载
Zinx框架视频教程(框架篇)(完整版下载)链接在下面正文
Zinx框架视频教程(应用篇)(完整版下载)链接在下面正文
Zinx开发API文档
Zinx第一章-引言
Zinx第二章-初识Zinx框架
Zinx第三章-基础路由模块
Zinx第四章-全局配置
Zinx第五章-消息封装
Zinx第六章-多路由模式
Zinx第七章-读写分离模型
Zinx第八章-消息队列及多任务
Zinx第九章-链接管理
Zinx第十章-连接属性设置
【Zinx应用案例-MMO多人在线游戏】
(1)案例介绍
(2)AOI兴趣点算法
(3)数据传输协议protocol buffer
(4)Proto3协议定义
(5)构建项目及用户上线
(6)世界聊天
(7)上线位置信息同步
(8)移动位置与AOI广播
(9)玩家下线
(10)模拟客户端AI模块
接下来我们再对Zinx做一个简单的升级,现在我们把服务器的全部数据都放在一个Request里,当前的Request结构如下:
type Request struct {
conn ziface.IConnection //已经和客户端建立好的链接
data []byte //客户端请求的数据
}
很明显,现在是用一个[]byte
来接受全部数据,又没有长度,又没有消息类型,这不科学。怎么办呢?我们现在就要自定义一种消息类型,把全部的消息都放在这种消息类型里。
5.1 创建消息封装类型
在zinx/ziface/
下创建imessage.go
文件
zinx/ziface/imessage.go
package ziface
/*
将请求的一个消息封装到message中,定义抽象层接口
*/
type IMessage interface {
GetDataLen() uint32 //获取消息数据段长度
GetMsgId() uint32 //获取消息ID
GetData() []byte //获取消息内容
SetMsgId(uint32) //设计消息ID
SetData([]byte) //设计消息内容
SetDataLen(uint32) //设置消息数据段长度
}
同时创建实例message类,在zinx/znet/
下,创建message.go
文件
zinx/znet/message.go
package znet
type Message struct {
Id uint32 //消息的ID
DataLen uint32 //消息的长度
Data []byte //消息的内容
}
//创建一个Message消息包
func NewMsgPackage(id uint32, data []byte) *Message {
return &Message{
Id: id,
DataLen: uint32(len(data)),
Data: data,
}
}
//获取消息数据段长度
func (msg *Message) GetDataLen() uint32 {
return msg.DataLen
}
//获取消息ID
func (msg *Message) GetMsgId() uint32 {
return msg.Id
}
//获取消息内容
func (msg *Message) GetData() []byte {
return msg.Data
}
//设置消息数据段长度
func (msg *Message) SetDataLen(len uint32) {
msg.DataLen = len
}
//设计消息ID
func (msg *Message) SetMsgId(msgId uint32) {
msg.Id = msgId
}
//设计消息内容
func (msg *Message) SetData(data []byte) {
msg.Data = data
}
整理一个基本的message包,会包含消息ID,数据,数据长度三个成员,提供基本的setter和getter方法,目的是为了以后做封装优化的作用。同时也提供了一个创建一个message包的初始化方法NewMegPackage
。
5.2 消息的封包与拆包
我们这里就是采用经典的TLV(Type-Len-Value)封包格式来解决TCP粘包问题吧。
由于Zinx也是TCP流的形式传播数据,难免会出现消息1和消息2一同发送,那么zinx就需要有能力区分两个消息的边界,所以Zinx此时应该提供一个统一的拆包和封包的方法。在发包之前打包成如上图这种格式的有head和body的两部分的包,在收到数据的时候分两次进行读取,先读取固定长度的head部分,得到后续Data的长度,再根据DataLen读取之后的body。这样就能够解决粘包的问题了。
A) 创建拆包封包抽象类
在zinx/ziface
下,创建idatapack.go
文件
zinx/ziface/idatapack.go
package ziface
/*
封包数据和拆包数据
直接面向TCP连接中的数据流,为传输数据添加头部信息,用于处理TCP粘包问题。
*/
type IDataPack interface{
GetHeadLen() uint32 //获取包头长度方法
Pack(msg IMessage)([]byte, error) //封包方法
Unpack([]byte)(IMessage, error) //拆包方法
}
B) 实现拆包封包类
在zinx/znet/
下,创建datapack.go
文件.
zinx/znet/datapack.go
package znet
import (
"bytes"
"encoding/binary"
"errors"
"zinx/utils"
"zinx/ziface"
)
//封包拆包类实例,暂时不需要成员
type DataPack struct {}
//封包拆包实例初始化方法
func NewDataPack() *DataPack {
return &DataPack{}
}
//获取包头长度方法
func(dp *DataPack) GetHeadLen() uint32 {
//Id uint32(4字节) + DataLen uint32(4字节)
return 8
}
//封包方法(压缩数据)
func(dp *DataPack) Pack(msg ziface.IMessage)([]byte, error) {
//创建一个存放bytes字节的缓冲
dataBuff := bytes.NewBuffer([]byte{})
//写dataLen
if err := binary.Write(dataBuff, binary.LittleEndian, msg.GetDataLen()); err != nil {
return nil, err
}
//写msgID
if err := binary.Write(dataBuff, binary.LittleEndian, msg.GetMsgId()); err != nil {
return nil, err
}
//写data数据
if err := binary.Write(dataBuff, binary.LittleEndian, msg.GetData()); err != nil {
return nil ,err
}
return dataBuff.Bytes(), nil
}
//拆包方法(解压数据)
func(dp *DataPack) Unpack(binaryData []byte)(ziface.IMessage, error) {
//创建一个从输入二进制数据的ioReader
dataBuff := bytes.NewReader(binaryData)
//只解压head的信息,得到dataLen和msgID
msg := &Message{}
//读dataLen
if err := binary.Read(dataBuff, binary.LittleEndian, &msg.DataLen); err != nil {
return nil, err
}
//读msgID
if err := binary.Read(dataBuff, binary.LittleEndian, &msg.Id); err != nil {
return nil, err
}
//判断dataLen的长度是否超出我们允许的最大包长度
if (utils.GlobalObject.MaxPacketSize > 0 && msg.DataLen > utils.GlobalObject.MaxPacketSize) {
return nil, errors.New("Too large msg data recieved")
}
//这里只需要把head的数据拆包出来就可以了,然后再通过head的长度,再从conn读取一次数据
return msg, nil
}
需要注意的是整理的Unpack
方法,因为我们从上图可以知道,我们进行拆包的时候是分两次过程的,第二次是依赖第一次的dataLen结果,所以Unpack
只能解压出包头head的内容,得到msgId 和 dataLen。之后调用者再根据dataLen继续从io流中读取body中的数据。
C) 测试拆包封包功能
为了容易理解,我们先不用集成zinx框架来测试,而是单独写一个Server和Client来测试一下封包拆包的功能
Server.go
package main
import (
"fmt"
"io"
"net"
"zinx/znet"
)
//只是负责测试datapack拆包,封包功能
func main() {
//创建socket TCP Server
listener, err := net.Listen("tcp", "127.0.0.1:7777")
if err != nil {
fmt.Println("server listen err:", err)
return
}
//创建服务器gotoutine,负责从客户端goroutine读取粘包的数据,然后进行解析
for {
conn, err := listener.Accept()
if err != nil {
fmt.Println("server accept err:", err)
}
//处理客户端请求
go func(conn net.Conn) {
//创建封包拆包对象dp
dp := znet.NewDataPack()
for {
//1 先读出流中的head部分
headData := make([]byte, dp.GetHeadLen())
_, err := io.ReadFull(conn, headData) //ReadFull 会把msg填充满为止
if err != nil {
fmt.Println("read head error")
break
}
//将headData字节流 拆包到msg中
msgHead, err := dp.Unpack(headData)
if err != nil {
fmt.Println("server unpack err:", err)
return
}
if msgHead.GetDataLen() > 0 {
//msg 是有data数据的,需要再次读取data数据
msg := msgHead.(*znet.Message)
msg.Data = make([]byte, msg.GetDataLen())
//根据dataLen从io中读取字节流
_, err := io.ReadFull(conn, msg.Data)
if err != nil {
fmt.Println("server unpack data err:", err)
return
}
fmt.Println("==> Recv Msg: ID=", msg.Id, ", len=", msg.DataLen, ", data=", string(msg.Data))
}
}
}(conn)
}
}
Client.go
package main
import (
"fmt"
"net"
"zinx/znet"
)
func main() {
//客户端goroutine,负责模拟粘包的数据,然后进行发送
conn, err := net.Dial("tcp", "127.0.0.1:7777")
if err != nil {
fmt.Println("client dial err:", err)
return
}
//创建一个封包对象 dp
dp := znet.NewDataPack()
//封装一个msg1包
msg1 := &znet.Message{
Id: 0,
DataLen: 5,
Data: []byte{'h', 'e', 'l', 'l', 'o'},
}
sendData1, err := dp.Pack(msg1)
if err != nil {
fmt.Println("client pack msg1 err:", err)
return
}
msg2 := &znet.Message{
Id: 1,
DataLen: 7,
Data: []byte{'w', 'o', 'r', 'l', 'd', '!', '!'},
}
sendData2, err := dp.Pack(msg2)
if err != nil {
fmt.Println("client temp msg2 err:", err)
return
}
//将sendData1,和 sendData2 拼接一起,组成粘包
sendData1 = append(sendData1, sendData2...)
//向服务器端写数据
conn.Write(sendData1)
//客户端阻塞
select {}
}
运行Server.go
go run Server.go
运行Client.go
go run Client.go
我们从服务端看到运行结果
$go run Server.go
==> Recv Msg: ID= 0 , len= 5 , data= hello
==> Recv Msg: ID= 1 , len= 7 , data= world!!
我们成功的得到了客户端发送的两个包,并且成功的解析出来。
5.3 Zinx-V0.5代码实现
现在我们需要把封包和拆包的功能集成到Zinx中,并且测试Zinx该功能是否生效。
A) Request字段修改
首先我们要将我们之前的Request中的[]byte
类型的data字段改成Message类型.
zinx/znet/request.go
package znet
import "zinx/ziface"
type Request struct {
conn ziface.IConnection //已经和客户端建立好的 链接
msg ziface.IMessage //客户端请求的数据
}
//获取请求连接信息
func(r *Request) GetConnection() ziface.IConnection {
return r.conn
}
//获取请求消息的数据
func(r *Request) GetData() []byte {
return r.msg.GetData()
}
//获取请求的消息的ID
func (r *Request) GetMsgID() uint32 {
return r.msg.GetMsgId()
}
B) 集成拆包过程
接下来我们需要在Connection的StartReader()
方法中,修改之前的读取客户端的这段代码:
func (c *Connection) StartReader() {
//...
for {
//读取我们最大的数据到buf中
buf := make([]byte, utils.GlobalObject.MaxPacketSize)
_, err := c.Conn.Read(buf)
if err != nil {
fmt.Println("recv buf err ", err)
c.ExitBuffChan <- true
continue
}
//...
}
}
改成如下:
zinx/znet/connection.go
StartReader()方法
func (c *Connection) StartReader() {
fmt.Println("Reader Goroutine is running")
defer fmt.Println(c.RemoteAddr().String(), " conn reader exit!")
defer c.Stop()
for {
// 创建拆包解包的对象
dp := NewDataPack()
//读取客户端的Msg head
headData := make([]byte, dp.GetHeadLen())
if _, err := io.ReadFull(c.GetTCPConnection(), headData); err != nil {
fmt.Println("read msg head error ", err)
break
}
//拆包,得到msgid 和 datalen 放在msg中
msg , err := dp.Unpack(headData)
if err != nil {
fmt.Println("unpack error ", err)
break
}
//根据 dataLen 读取 data,放在msg.Data中
var data []byte
if msg.GetDataLen() > 0 {
data = make([]byte, msg.GetDataLen())
if _, err := io.ReadFull(c.GetTCPConnection(), data); err != nil {
fmt.Println("read msg data error ", err)
break
}
}
msg.SetData(data)
//得到当前客户端请求的Request数据
req := Request{
conn:c,
msg:msg, //将之前的buf 改成 msg
}
//从路由Routers 中找到注册绑定Conn的对应Handle
go func (request ziface.IRequest) {
//执行注册的路由方法
c.Router.PreHandle(request)
c.Router.Handle(request)
c.Router.PostHandle(request)
}(&req)
}
}
C) 提供封包方法
现在我们已经将拆包的功能集成到Zinx中了,但是使用Zinx的时候,如果我们希望给用户返回一个TLV格式的数据,总不能每次都经过这么繁琐的过程,所以我们应该给Zinx提供一个封包的接口,供Zinx发包使用。
zinx/ziface/iconnection.go
新增SendMsg()
方法
package ziface
import "net"
//定义连接接口
type IConnection interface {
//启动连接,让当前连接开始工作
Start()
//停止连接,结束当前连接状态M
Stop()
//从当前连接获取原始的socket TCPConn
GetTCPConnection() *net.TCPConn
//获取当前连接ID
GetConnID() uint32
//获取远程客户端地址信息
RemoteAddr() net.Addr
//直接将Message数据发送数据给远程的TCP客户端
SendMsg(msgId uint32, data []byte) error
}
zinx/znet/connection.go
SendMsg()
方法实现:
//直接将Message数据发送数据给远程的TCP客户端
func (c *Connection) SendMsg(msgId uint32, data []byte) error {
if c.isClosed == true {
return errors.New("Connection closed when send msg")
}
//将data封包,并且发送
dp := NewDataPack()
msg, err := dp.Pack(NewMsgPackage(msgId, data))
if err != nil {
fmt.Println("Pack error msg id = ", msgId)
return errors.New("Pack error msg ")
}
//写回客户端
if _, err := c.Conn.Write(msg); err != nil {
fmt.Println("Write msg id ", msgId, " error ")
c.ExitBuffChan <- true
return errors.New("conn Write error")
}
return nil
}
5.4 使用Zinx-V0.5完成应用程序
现在我们可以基于Zinx框架完成发送msg功能的测试用例了。
Server.go
package main
import (
"fmt"
"zinx/ziface"
"zinx/znet"
)
//ping test 自定义路由
type PingRouter struct {
znet.BaseRouter
}
//Test Handle
func (this *PingRouter) Handle(request ziface.IRequest) {
fmt.Println("Call PingRouter Handle")
//先读取客户端的数据,再回写ping...ping...ping
fmt.Println("recv from client : msgId=", request.GetMsgID(), ", data=", string(request.GetData()))
//回写数据
err := request.GetConnection().SendMsg(1, []byte("ping...ping...ping"))
if err != nil {
fmt.Println(err)
}
}
func main() {
//创建一个server句柄
s := znet.NewServer()
//配置路由
s.AddRouter(&PingRouter{})
//开启服务
s.Serve()
}
当前Server端是先把客户端发送来Msg解析,然后返回一个MsgId为1的消息,消息内容是"ping...ping...ping"
Client.go
package main
import (
"fmt"
"io"
"net"
"time"
"zinx/znet"
)
/*
模拟客户端
*/
func main() {
fmt.Println("Client Test ... start")
//3秒之后发起测试请求,给服务端开启服务的机会
time.Sleep(3 * time.Second)
conn,err := net.Dial("tcp", "127.0.0.1:7777")
if err != nil {
fmt.Println("client start err, exit!")
return
}
for {
//发封包message消息
dp := znet.NewDataPack()
msg, _ := dp.Pack(znet.NewMsgPackage(0,[]byte("Zinx V0.5 Client Test Message")))
_, err := conn.Write(msg)
if err !=nil {
fmt.Println("write error err ", err)
return
}
//先读出流中的head部分
headData := make([]byte, dp.GetHeadLen())
_, err = io.ReadFull(conn, headData) //ReadFull 会把msg填充满为止
if err != nil {
fmt.Println("read head error")
break
}
//将headData字节流 拆包到msg中
msgHead, err := dp.Unpack(headData)
if err != nil {
fmt.Println("server unpack err:", err)
return
}
if msgHead.GetDataLen() > 0 {
//msg 是有data数据的,需要再次读取data数据
msg := msgHead.(*znet.Message)
msg.Data = make([]byte, msg.GetDataLen())
//根据dataLen从io中读取字节流
_, err := io.ReadFull(conn, msg.Data)
if err != nil {
fmt.Println("server unpack data err:", err)
return
}
fmt.Println("==> Recv Msg: ID=", msg.Id, ", len=", msg.DataLen, ", data=", string(msg.Data))
}
time.Sleep(1*time.Second)
}
}
这里Client客户端,模拟了一个MsgId为0的"Zinx V0.5 Client Test Message"消息,然后把服务端返回的数据打印出来。
我们分别在两个终端运行
$go run Server.go
$go run Client.go
服务端结果:
$ go run Server.go
Add Router succ!
[START] Server name: zinx v-0.5 demoApp,listenner at IP: 127.0.0.1, Port 7777 is starting
[Zinx] Version: V0.4, MaxConn: 3, MaxPacketSize: 4096
start Zinx server zinx v-0.5 demoApp succ, now listenning...
Reader Goroutine is running
Call PingRouter Handle
recv from client : msgId= 0 , data= Zinx V0.5 Client Test Message
Call PingRouter Handle
recv from client : msgId= 0 , data= Zinx V0.5 Client Test Message
Call PingRouter Handle
recv from client : msgId= 0 , data= Zinx V0.5 Client Test Message
...
客户端结果:
$ go run Client.go
Client Test ... start
==> Recv Msg: ID= 1 , len= 18 , data= ping...ping...ping
==> Recv Msg: ID= 1 , len= 18 , data= ping...ping...ping
==> Recv Msg: ID= 1 , len= 18 , data= ping...ping...ping
...
好了,我们的Zinx已经成功的集成消息的封装功能了,这样我们就有Zinx的通信的基本协议标准了。
关于作者:
作者:Aceld(刘丹冰)
mail: danbing.at@gmail.com
github: https://github.com/aceld
原创书籍: https://www.kancloud.cn/@aceld
原创声明:未经作者允许请勿转载, 如果转载请注明出处