《机器学习及实践——从零开始通往KAGGLE竞赛之路》读书笔记九

回归模型

回归问题与分类问题的区别在于回归问题预测的目标是连续变量,比如:价格、降水量等,这一节我们针对波士顿房价预测这一经典问题进行分析。

线性回归器

模型介绍


为了学习到模型的参数,即斜率和截距,这里我们仍然使用精确的计算方法和一种快速的随机梯度下降算法。

# 从sklearn.datasets导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量boston中。
boston = load_boston()
# 输出数据描述。
print (boston.DESCR)
# 从sklearn.model_selection导入数据分割器。
from sklearn.model_selection import train_test_split

# 导入numpy并重命名为np。
import numpy as np

X = boston.data
y = boston.target

# 随机采样25%的数据构建测试样本,其余作为训练样本。
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)

print("The max target value is ", np.max(boston.target))
print("The min target value is ", np.min(boston.target))
print("The average target value is ", np.mean(boston.target))

# 从sklearn.preprocessing导入数据标准化模块。
from sklearn.preprocessing import StandardScaler

# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()

# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)

y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)

# 从sklearn.linear_model导入LinearRegression。
from sklearn.linear_model import LinearRegression

# 使用默认配置初始化线性回归器LinearRegression。
lr = LinearRegression()
# 使用训练数据进行参数估计。
lr.fit(X_train, y_train)
# 对测试数据进行回归预测。
lr_y_predict = lr.predict(X_test)

# 从sklearn.linear_model导入SGDRegressor。
from sklearn.linear_model import SGDRegressor

# 使用默认配置初始化线性回归器SGDRegressor。
sgdr = SGDRegressor()
# 使用训练数据进行参数估计。
sgdr.fit(X_train, y_train)
# 对测试数据进行回归预测。
sgdr_y_predict = sgdr.predict(X_test)
性能评测

不同于类别预测,我们不能苛求回归预测的数值结果要严格地与真实数值相同。一般情况下,我们希望衡量预测值与真实值之间的差距。我们通过多个评测函数来进行评价。包括平均绝对误差(Mean Absolute Error,MAE), 均方误差(Mean Squared Error, MSE)。

MAE
平均绝对误差
MSE
均方误差
R-squared

以上两个评价函数,会随着不同的问题变化巨大,欠缺不同问题之间的可比性。R-squared考量了回归值和经典值的差异,假设f(x^i)代表回归模型根据特征x^i的预测值:

R-squared

SS_{tot}代表测试数据真实值的方差(内部差异),$SS_{res}$$代表回归值与真实值之间的差异(回归差异)。

# 使用LinearRegression模型自带的评估模块,并输出评估结果。
print ('The value of default measurement of LinearRegression is', lr.score(X_test, y_test))

# 从sklearn.metrics依次导入r2_score、mean_squared_error以及mean_absoluate_error用于回归性能的评估。
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

# 使用r2_score模块,并输出评估结果。
print ('The value of R-squared of LinearRegression is', r2_score(y_test, lr_y_predict))

# 使用mean_squared_error模块,并输出评估结果。
print ('The mean squared error of LinearRegression is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))

# 使用mean_absolute_error模块,并输出评估结果。
print ('The mean absoluate error of LinearRegression is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))
print 'The value of default measurement of SGDRegressor is', sgdr.score(X_test, y_test)

# 使用r2_score模块,并输出评估结果。
print 'The value of R-squared of SGDRegressor is', r2_score(y_test, sgdr_y_predict)

# 使用mean_squared_error模块,并输出评估结果。
print 'The mean squared error of SGDRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

# 使用mean_absolute_error模块,并输出评估结果。
print 'The mean absoluate error of SGDRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))
特点分析

线性回归器是最为简单、易用的回归模型。面对数据量规模庞大的任务,SGD更加高效。

支持向量机(回归)

# 从sklearn.svm中导入支持向量机(回归)模型。
from sklearn.svm import SVR

# 使用线性核函数配置的支持向量机进行回归训练,并且对测试样本进行预测。
linear_svr = SVR(kernel='linear')
linear_svr.fit(X_train, y_train)
linear_svr_y_predict = linear_svr.predict(X_test)

# 使用多项式核函数配置的支持向量机进行回归训练,并且对测试样本进行预测。
poly_svr = SVR(kernel='poly')
poly_svr.fit(X_train, y_train)
poly_svr_y_predict = poly_svr.predict(X_test)

# 使用径向基核函数配置的支持向量机进行回归训练,并且对测试样本进行预测。
rbf_svr = SVR(kernel='rbf')
rbf_svr.fit(X_train, y_train)
rbf_svr_y_predict = rbf_svr.predict(X_test)
# 使用R-squared、MSE和MAE指标对三种配置的支持向量机(回归)模型在相同测试集上进行性能评估。
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
print 'R-squared value of linear SVR is', linear_svr.score(X_test, y_test)
print 'The mean squared error of linear SVR is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(linear_svr_y_predict))
print 'The mean absoluate error of linear SVR is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(linear_svr_y_predict))
print 'R-squared value of Poly SVR is', poly_svr.score(X_test, y_test)
print 'The mean squared error of Poly SVR is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(poly_svr_y_predict))
print 'The mean absoluate error of Poly SVR is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(poly_svr_y_predict))
print 'R-squared value of RBF SVR is', rbf_svr.score(X_test, y_test)
print 'The mean squared error of RBF SVR is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rbf_svr_y_predict))
print 'The mean absoluate error of RBF SVR is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rbf_svr_y_predict))
特点分析

不同模型配置在相同数据上的表现的性能有所差异。该模型通过配置不同的核函数来改变模型的性能。

K邻近(回归)

# 从sklearn.neighbors导入KNeighborRegressor(K近邻回归器)。
from sklearn.neighbors import KNeighborsRegressor

# 初始化K近邻回归器,并且调整配置,使得预测的方式为平均回归:weights='uniform'。
uni_knr = KNeighborsRegressor(weights='uniform')
uni_knr.fit(X_train, y_train)
uni_knr_y_predict = uni_knr.predict(X_test)

# 初始化K近邻回归器,并且调整配置,使得预测的方式为根据距离加权回归:weights='distance'。
dis_knr = KNeighborsRegressor(weights='distance')
dis_knr.fit(X_train, y_train)
dis_knr_y_predict = dis_knr.predict(X_test)
print 'R-squared value of uniform-weighted KNeighorRegression:', uni_knr.score(X_test, y_test)
print 'The mean squared error of uniform-weighted KNeighorRegression:', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
print 'The mean absoluate error of uniform-weighted KNeighorRegression', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
# 使用R-squared、MSE以及MAE三种指标对根据距离加权回归配置的K近邻模型在测试集上进行性能评估。
print 'R-squared value of distance-weighted KNeighorRegression:', dis_knr.score(X_test, y_test)
print 'The mean squared error of distance-weighted KNeighorRegression:', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))
print 'The mean absoluate error of distance-weighted KNeighorRegression:', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))   

回归树

# 从sklearn.tree中导入DecisionTreeRegressor。
from sklearn.tree import DecisionTreeRegressor
# 使用默认配置初始化DecisionTreeRegressor。
dtr = DecisionTreeRegressor()
# 用波士顿房价的训练数据构建回归树。
dtr.fit(X_train, y_train)
# 使用默认配置的单一回归树对测试数据进行预测,并将预测值存储在变量dtr_y_predict中。
dtr_y_predict = dtr.predict(X_test)
# 使用R-squared、MSE以及MAE指标对默认配置的回归树在测试集上进行性能评估。
print 'R-squared value of DecisionTreeRegressor:', dtr.score(X_test, y_test)
print 'The mean squared error of DecisionTreeRegressor:', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dtr_y_predict))
print 'The mean absoluate error of DecisionTreeRegressor:', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dtr_y_predict))
特征分析

树模型优点:

  • 树模型可以解决非线性问题。
  • 树模型不要求对特征标准化和和统一量化(数值型和类别型特征都可以直接应用)
  • 树模型可以直观输出决策过程,使得预测结果具有可解释性。

树模型缺陷:

  • 因为树模型可以解决复杂的非线性拟合问题,更加容易因为模型搭建过于复杂而失去泛化能力。
  • 树模型从上至下的预测流程会因为细微的改变而发生较大的结构变化,预测稳定性较差。
  • 依托训练数据构建最佳树模型是NP问题,因此我们只能使用类似贪婪算法寻找次优解。

集成模型

# 从sklearn.ensemble中导入RandomForestRegressor、ExtraTreesGressor以及GradientBoostingRegressor。
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor

# 使用RandomForestRegressor训练模型,并对测试数据做出预测,结果存储在变量rfr_y_predict中。
rfr = RandomForestRegressor()
rfr.fit(X_train, y_train)
rfr_y_predict = rfr.predict(X_test)

# 使用ExtraTreesRegressor训练模型,并对测试数据做出预测,结果存储在变量etr_y_predict中。
etr = ExtraTreesRegressor()
etr.fit(X_train, y_train)
etr_y_predict = etr.predict(X_test)

# 使用GradientBoostingRegressor训练模型,并对测试数据做出预测,结果存储在变量gbr_y_predict中。
gbr = GradientBoostingRegressor()
gbr.fit(X_train, y_train)
gbr_y_predict = gbr.predict(X_test)
# 使用R-squared、MSE以及MAE指标对默认配置的随机回归森林在测试集上进行性能评估。
print 'R-squared value of RandomForestRegressor:', rfr.score(X_test, y_test)
print 'The mean squared error of RandomForestRegressor:', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rfr_y_predict))
print 'The mean absoluate error of RandomForestRegressor:', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(rfr_y_predict))
# 使用R-squared、MSE以及MAE指标对默认配置的极端回归森林在测试集上进行性能评估。
print 'R-squared value of ExtraTreesRegessor:', etr.score(X_test, y_test)
print 'The mean squared error of  ExtraTreesRegessor:', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(etr_y_predict))
print 'The mean absoluate error of ExtraTreesRegessor:', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(etr_y_predict))

# 利用训练好的极端回归森林模型,输出每种特征对预测目标的贡献度。
print np.sort(zip(etr.feature_importances_, boston.feature_names), axis=0)
# 使用R-squared、MSE以及MAE指标对默认配置的梯度提升回归树在测试集上进行性能评估。
print 'R-squared value of GradientBoostingRegressor:', gbr.score(X_test, y_test)
print 'The mean squared error of GradientBoostingRegressor:', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(gbr_y_predict))
print 'The mean absoluate error of GradientBoostingRegressor:', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(gbr_y_predict))

特点分析

虽然模型的训练时间消耗更高,但是往往可以提供更高的表现性能。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容