Actor Critic

一、介绍

Actor-Critic 算法有两部分组成:actor 和 critic。其中 action 就是Policy Gradient 算法,critic 是Q-learning。所以实际上 actor-critic算法是Q-learning算法和policy gradient算法的结合。

  1. Actor Critic 算法能在有限维的输入和有限维的输出中起到比较好的效果。
  2. Actor 角色起到的作用是:在当前状态下决定哪一个动作被执行会达到最好的效果;而Critic则是对某一个状态下采取的某个动作做出评价。这个评价会影响 actor 今后的选择。
  3. Actor-Critic 算法所需要的训练时间要比Policy Gradient 算法短。

二、回顾 Q-learning

对于Q-learning,有如下特点:

  • 基于 value-based
  • 处理离散的动作空间
  • 它是一个 model-free 的算法,使用 Q函数去找到最理想的策略


    image.png

如上图的网络都是为了近似 Q(s,a)函数,有了 Q(s,a),我们就可以根据Q(s,a)的值来作为判断依据,作出恰当的行为。

image.png

Q-learning算法最主要的一点是:决策的依据是Q(s,a)的值。即算法的本质是在计算 当前状态s, 采取某个动作 a 后会获得的未来的奖励的期望,这个值就是 Q(s,a)。换句话说,我们可以把这个算法的核心看成一个评论家(Critic),而这个评论家会对我们在当前状态s下,采取的动作a这个决策作出一个评价,评价的结果就是Q(s,a)的值。

但是,Q-learning 算法却不怎么适合解决连续动作空间的问题。因为如果动作空间是连续的,那么用Q-learning算法就需要对动作空间离散化,而离散化的结果会导致动作空间的维度非常高,这就使得Q-learning 算法在实际应用起来很难求得最优值,且计算速度比较慢。

而Policy Gradient 正好弥补了这个缺点。

三、回顾 Policy Gradient

Policy Gradient 算法的核心思想是: 根据当前状态,直接算出下一个动作是什么或下一个动作的概率分布是什么。即它的输入是当前状态 s, 而输出是具体的某一个动作或者是动作的分布。

image.png

我们可以想像,Policy Gradient 就像一个演员(Actor),它根据某一个状态s,然后作出某一个动作或者给出动作的分布,而不像Q-learning 算法那样输出动作的Q函数值。

四、Actor Critic

Actor-Critic 是Q-learning 和 Policy Gradient 的结合。
为了导出 Actor-Critic 算法,必须先了解Policy Gradient 算法是如何一步步优化策略的。

image.png

如上图所示, 最简单的Policy Gradient 算法要优化的函数如下:
L = \sum log \pi_\theta(s_t, a_t) v_t

其中 v_t 要根据 Monte-Carlo 算法估计,故又可以写成:
L = \sum log \pi_\theta(s_t, a_t) G_t

但是这个 G_t 方差会比较大,因为G_t是由多个随机变量得到的,因此,我们需要寻找减少方差的办法。
一个方法就是引入一个 baseline 的函数 b, 这个 b 会使得 (G_t - b)的期望不变,但是方差会变小,常用的 baseline函数就是 V(s_t)。再来,为了进一步降低 G_t的随机性,我们用 E(G_t) 替代 G_t,这样,源式就变成:
L = \sum log \pi_\theta(s_t, a_t) (E(G_t) - V(s_t))
因为 E(G_t| s_t, a_t) = Q(s_t, a_t),故进一步演化成:
L = \sum log \pi_\theta(s_t, a_t) (Q(s_t, a_t) - V(s_t))

照上面的式子看来,我们需要两个网络去估计 Q(s_t, a_t)V(s_t),但是考虑到贝尔曼方程:
Q(s_t, a_t) = E[r + \gamma V(s_{t+1})]
弃掉期望, 得:
Q(s_t, a_t) = r + \gamma V(s_{t+1})

即最终的式子为:
L = \sum log \pi_\theta(s_t, a_t) (r+ \gamma V(s_{t+1}) - V(s_t))

这样只需要一个网络就可以估算出 V 值了,而估算 V 的网络正是我们在 Q-learning 中做的,所以我们就把这个网络叫做 Critic。这样就在 Policy Gradient 算法的基础上引进了 Q-learning 算法了

image.png

引用

https://www.jianshu.com/p/25c09ae3d206
https://www.bilibili.com/video/av24724071/?p=6
https://www.jianshu.com/p/277abf64e369

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容