JStorm kafka集成解析

前言

上一篇<JStorm介绍>从架构设计、计算模型上对jstorm做了系统化表述,读后会对应用场景、功能实现上有清晰明确的认识,建议没有看过的朋友看一看。这篇文章主要聊聊集成kafka的实现细节、开发时要注意的一些坑及优化方面的一些思考

实时流式计算框架一般从消息队列实时拉取数据,而kafka是很多公司首选的分布式消息发布订阅系统,jstorm也提供了消费kafka的spout,便于构建基于kafka的实时应用程序。关于kafka的更多介绍可参见<Kafka Producer可靠性浅析>

0x01 partition分配

kafka的一个topic会有一到多个partition,而spout task也可能有多个,所以在创建KafkaSpout task时,就给每个task分配好了待消费的partition列表,分配算法如下:

也就是说每个task在运行期间消费的partition是固定的,这样如果topology提交后,topic又新增了分区,会导致消费不到新增的partition

0x02 业务逻辑

KafkaSpout用SimpleConsumer低级API消费Kafka,手动管理offset是低级api要做的主要任务,当然KafkaSpout也不例外,KafkaSpout也是用zookeeper持久化offset。如果每次ack时都同步offset,消息量大的情况下,和zk交互就变得异常频繁,这对zk稳定性势必造成很大压力,也会降低topology吞吐率,所以KafkaSpout用定时机制同步offset,kafka.offset.update.interval.ms设置同步间隔,默认2s。

jstorm计算框架的ack机制保证了消息可靠性(消息不丢失):ack确认消息处理完毕,spout不用重复发送该消息;fail表示下游消息处理失败,spout要再次发送该消息以保证每条消息都会被成功处理。

    结合jstorm框架和KafkaConsumer,内部主要涉及到ack/fail/emit、从kafka poll消息和commit postition这几个操作,其中poll消息、emit和commit position是在KafkaSpout.nextTuple方法内顺序执行的。涉及到的主要数据结构:

    LinkedList emittingMessages :存储consumer从topic拉取的消息

    SortedSet pendingOffsets:以有序方式存放从topic拉取到的消息offset

SortedSet failedOffsets:fail事件的消息offset

    long emittingOffset:当前从topic拉取的消息offset

    long lastCommittedOffset:最后一次持久化存储的offset

其时序图如下:

0x03 nextTuple、ack解析

    如前所述,nextTuple方法会从kafka里拉取消息并把消息的offset add到pendingOffsets,而ack时从pendingOffsets里remove元素,ack和nextTuple可能并发执行,这样在并发场景下,因SortedSet是非线程安全的,就会出现异常:    

解决这个bug的方案:

        1、声明pendingOffsets为线程安全的SortedSet对象,比如ConcurrentSkipListSet

        2、在对pendingOffsets的add、remove操作上加同步机制锁

0x04 commit offset解析

    KafkaSpout是定时的(不是单独线程而是在nextTuple方法内)commit offset:从pendingOffsets有序列表里返回第一个(最小的offset)元素,然后判断和上次提交的offset(lastCommittedOffset)是否相同,如果不相同就把该offset存到ZK,否则不予处理。

如果下游处理失败,即fail而没有ack,就会产生一个问题,每次从pendingOffsets返回第一个元素时,都是这条fail消息的offset,导致offset不会commit,但实际上KafkaSpout还在继续消费kafka。而且KafkaSpout的fail函数只是把失败消息的offset从failedOffsets列表里remove掉,没有做进一步处理,这是一个隐形的bug。理论上对失败的消息是要重新发送的,才能保证最终处理结果是exactly once,如果emit失败的消息,要注意流式的顺序性。

0x05 Partition Not Leader Exception 

Spout先找到每个partition的leader,然后根据leader broker信息创建simpleConsumer,以后就重用这个consumer对象消费消息。这有个隐藏的坑,在创建consumer对象后,如果partition的leader发生重新选举,再用这个consumer消费消息时,就会报异常:[This server is not the leader for that topic-partition.]

解决方案:捕获异常,然后强制重新获取leader、创建SimpleKafka

本文首发于公众号:data之道

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容