rm(list = ls())
load(file = 'step4output.Rdata')
富集分析考验网速,因此给大家保存了Rdata
上课运行示例数据无需修改,在做自己的数据时请注意把本行之后的load()去掉
library(clusterProfiler)
library(dplyr)
library(ggplot2)
source("kegg_plot_function.R")
#source表示运行整个kegg_plot_function.R脚本,里面是一个function
#以up_kegg和down_kegg为输入数据做图
1.GO database analysis ----
(1)输入数据
gene_up = deg[deg$change == 'up','ENTREZID']
gene_down = deg[deg$change == 'down','ENTREZID']
gene_diff = c(gene_up,gene_down)#合并
gene_all = deg[,'ENTREZID']
(2)GO分析,分三部分
#以下步骤耗时很长,实际运行时注意把if后面的括号里F改成T,
#自己操作时需要改成T,时间久,课堂上未运行
if(F){
#细胞组分
ego_CC <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "CC",
pAdjustMethod = "BH",
minGSSize = 1,
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)
#生物过程
ego_BP <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
minGSSize = 1,
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)
#分子功能:
ego_MF <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "MF",
pAdjustMethod = "BH",
minGSSize = 1,
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)
save(ego_CC,ego_BP,ego_MF,file = "ego_GSE42872.Rdata")
}
load(file = "ego_GSE42872.Rdata")
(3)可视化
#条带图
barplot(ego_CC,showCategory=20)
#气泡图
dotplot(ego_CC)
#下面的图需要映射颜色,设置和示例数据一样的geneList
geneList = deg$logFC
names(geneList)=deg$ENTREZID
geneList = sort(geneList,decreasing = T)
(3)展示top5通路的共同基因,要放大看。
#Gene-Concept Network
cnetplot(ego_CC, categorySize="pvalue", foldChange=geneList,colorEdge = TRUE)
cnetplot(ego_CC, foldChange=geneList, circular = TRUE, colorEdge = TRUE)
#Enrichment Map
emapplot(ego_CC)
(4)展示通路关系
goplot(ego_CC)
(5)Heatmap-like functional classification
heatplot(ego_CC,foldChange = geneList)
#太多基因就会糊。可通过调整比例或者减少基因来控制。
pdf("heatplot.pdf",width = 14,height = 5)
heatplot(ego_CC,foldChange = geneList)
dev.off()
2.KEGG pathway analysis----
上调、下调、差异、所有基因
(1)输入数据
gene_up = deg[deg$change == 'up','ENTREZID']
gene_down = deg[deg$change == 'down','ENTREZID']
gene_diff = c(gene_up,gene_down)
gene_all = deg[,'ENTREZID']
(2)对上调/下调/所有差异基因进行富集分析
注意这里又有个F
if(F){
kk.up <- enrichKEGG(gene = gene_up,
organism = 'hsa',
universe = gene_all,
pvalueCutoff = 0.9,
qvalueCutoff = 0.9)
kk.down <- enrichKEGG(gene = gene_down,
organism = 'hsa',
universe = gene_all,
pvalueCutoff = 0.9,#可以自己设置,富集的结果条件
qvalueCutoff =0.9)
kk.diff <- enrichKEGG(gene = gene_diff,
organism = 'hsa',
pvalueCutoff = 0.9)
save(kk.diff,kk.down,kk.up,file = "GSE42872kegg.Rdata")
}
load("GSE42872kegg.Rdata")
(3)从富集结果中提取出结果数据框
kegg_diff_dt <- kk.diff@result
(4)按照pvalue筛选通路
#在enrichkegg时没有设置pvaluecutoff,在此处筛选
down_kegg <- kk.down@result %>%
filter(pvalue<0.05) %>% #筛选行
mutate(group=-1) #新增列
#插播,uniqe返回的不是逻辑值,duplicated去重复才是返回逻辑值,加!表示否定
#多个探针对应一个基因,筛选保留一个的时候,可以取均值或最大值,无正确答应
#table统计差异表达的基因值会重复统计
up_kegg <- kk.up@result %>%
filter(pvalue<0.05) %>%
mutate(group=1)
(5)可视化
g_kegg <- kegg_plot(up_kegg,down_kegg)
#g_kegg +scale_y_continuous(labels = c(20,15,10,5,0,5))
#设置叠加用+注意每个研究不一样,自己研究课题时,需要自己清楚
ggsave(g_kegg,filename = 'kegg_up_down.png')
#gsea作kegg富集分析,可选----
#(1)查看示例数据
data(geneList, package="DOSE")
#(2)将我们的数据转换成示例数据的格式
geneList=deg$logFC
names(geneList)=deg$ENTREZID
geneList=sort(geneList,decreasing = T)
#(3)富集分析
kk_gse <- gseKEGG(geneList = geneList,
organism = 'hsa',
nPerm = 1000,
minGSSize = 120,
pvalueCutoff = 0.9,#可以修改
verbose = FALSE)
down_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore < 0,];down_kegg$group=-1
up_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore > 0,];up_kegg$group=1
#(4)可视化
kegg_plot(up_kegg,down_kegg)
ggsave('kegg_up_down_gsea.png')