一文了解 Python 中的生成器

前言

生成器很容易实现,但却不容易理解。生成器也可用于创建迭代器,但生成器可以用于一次返回一个可迭代的集合中一个元素。现在来看一个例子:

def yrange(n):
    i = 0
    while i < n:
        yield i
        i += 1

每次执行 yield 语句时,函数都会生成一个新值。

“生成器”这个词被混淆地用来表示生成的函数和它生成的内容。

当调用生成器函数时,它甚至没有开始执行该函数就返回一个生成器对象。 当第一次调用 next() 方法时,函数开始执行直到它到达 yield 语句。 产生的值由下一次调用返回。

以下示例演示了 yield 和对生成器对象上的 next 方法的调用之间的相互作用。

>>> def foo():
...     print("begin")
...     for i in range(3):
...         print("before yield", i)
...         yield i
...         print("after yield", i)
...     print("end")
...
>>> f = foo()
>>> next(f)
begin
before yield 0
0
>>> next(f)
after yield 0
before yield 1
1
>>> next(f)
after yield 1
before yield 2
2
>>> next(f)
after yield 2
end
Traceback (most recent call last):
  File "<pyshell#13>", line 1, in <module>
    next(f)
StopIteration
>>>

生成器也是迭代器

生成器也是迭代器,支持使用 for 循环。当使用 for 语句开始对一组项目进行迭代时,即运行生成器。一旦生成器的函数代码到达 yield 语句,生成器就会将其执行交还给 for 循环,从集合中返回一个新值。生成器函数可以根据需要生成任意数量的值(可能是无限的),依次生成每个值。

f_2 = foo()
for i in f_2: print(i)

begin
before yield 0
0
after yield 0
end
before yield 1
1
after yield 1
end
before yield 2
2
after yield 2
end

当一个函数包含 yield 时,Python 会自动实现一个迭代器,为我们应用所有需要的方法,比如 __iter__()__next__(),所以生成器也能和迭代器有相同的功能,如下所示:

def yrange():
    i = 1
    while True:
        yield i
        i = i + 1

def squares():
    for i in yrange():
        yield i * i

def take(n, seq):
    seq = iter(seq)
    result = []
    try:
        for i in range(n):
            result.append(next(seq))
    except StopIteration:
        pass
    return result

print(take(5, squares()))

# [1, 4, 9, 16, 25]

接下来看一下如何使用生成器计算斐波那契数列:

def fib(n):
    if n <= 1:
        return 1
    a, b = 0, 1
    for _ in range(n):
        a, b = b, a + b
        yield a

for i in fib(10):
    print(i, end=' ')

# Result:1 1 2 3 5 8 13 21 34 55 

生成器推导式

生成器表达式是列表推导式的生成器版本。它们看起来像列表推导式,但返回的是一个生成器,而不是一个列表。生成器推导式的本质:

  • 使用 yield 会产生一个生成器对象
  • 用 return 将返回当前的第一个值。
generator_expressions = (x for x in range(10))
generator_expressions
<generator object <genexpr> at 0x0000023F8BC51AF0>
sum(generator_expressions)
45

无限生成器

生成器的另一个常见场景是无限序列生成。在 Python 中,当您使用有限序列时,您可以简单地调用 range() 并在列表中对其进行计数,例如:

a = range(5)
print(list(a))
[0, 1, 2, 3, 4]

也可以这样做,使用如下生成器生成无限序列:

def infinite_sequence():
    num = 0
    while True:
        yield num
        num += 1

运行此代码时,可以看到其运行非常快,可以通过 CTRL+C 来使得程序结束,如下:

生成器实际用法

1. 读取文件行

生成器的一个常见用法是处理大型文件或数据流,例如 CSV 文件。假设我们需要计算文本文件中有多少行,我们的代码可能如下所示:

def csv_reader(file_name):
    file = open(file_name)
    result = file.read().split("\n")
    return result

csv_gen = csv_reader("some_file.csv")
row_count = 0

for row in csv_gen:
    row_count += 1

print(f"Row count is {row_count}")

我们的 csv_reader 函数将简单地将文件打开到内存中并读取所有行,然后它将行拆分并与文件数据形成一个数组。如果文件包含几千行,可能就会导致速度变慢,设置是内存被占满。

这里就可以通过生成器重构的 csv_reader 函数。

def csv_reader(file_name):
    for row in open(file_name, "r"):
        yield row
  1. 读取文件内容
def readfiles(filenames):
    for f in filenames:
        for line in open(f):
            yield line

def grep(pattern, lines):
    return (line for line in lines if pattern in line)

def printlines(lines):
    for line in lines:
        print(line, end="")

def main(pattern, filenames):
    lines = readfiles(filenames)
    lines = grep(pattern, lines)
    printlines(lines)

高级生成器用法

到目前为止,我们已经介绍了生成器最常见的用途和构造,但还有更多内容需要介绍。随着时间的推移,Python 为生成器添加了一些额外的方法:

  • send() 函数
  • throw() 函数
  • close() 函数

接下来,我们来看一下如何使用这三个函数。

  1. 首先,新建一个生成器将生成素数,其实现如下:
def isPrime(n):
    if n < 2 or n % 1 > 0:
        return False
    elif n == 2 or n == 3:
        return True
    for x in range(2, int(n**0.5) + 1):
        if n % x == 0:
            return False
    return True

def getPrimes():
    value = 0
    while True:
        if isPrime(value):
            i = yield value
            if i is not None:
                value = i
        value += 1
  1. 然后我们调用 send() 函数,这个函数会向生成器 prime_gen 传入一个值,然后从这个值开始计算下一个素数的值:
prime_gen = getPrimes()
print(next(prime_gen))
print(prime_gen.send(1000))
print(next(prime_gen))

可以看到如下结果:

  1. throw() 允许您使用生成器抛出异常。例如,这对于以某个值结束迭代很有用。比如我们想得到小于 20 的素数就可以使用如下方法:
prime_gen = getPrimes()

for x in prime_gen:
    if x > 20:
        prime_gen.throw(ValueError, "I think it was enough!")
    print(x)

运行该代码,得到结果如下:

  1. 在前面的示例中,我们通过引发异常来停止迭代,但这并不是用户想看到的,谁想看到报错呢。因此,结束迭代的更好方法是使用 close():
prime_gen = getPrimes()

for x in prime_gen:
    if x > 20:
        prime_gen.close()
    print(x)

运行结果如下图:

可以看到,生成器在运行到停止了,没有引发任何异常。

总结

生成器简化了迭代器的创建。 生成器是产生一系列结果而不是单个值的函数

生成器可以用于优化 Python 应用程序的性能,尤其是在使用大型数据集或文件时的场景中。

生成器还通过避免复杂的迭代器实现或通过其他方式处理数据来提供清晰的代码。

参考链接:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容