R语言相关性分析

1.  R语言自带函数cor(data, method=" ")可以快速计算出相关系数,数据类型:data.frame

 如data.frame为:zz, 绘图如下:

a. single protein:线性回归画法

1. ggplot(zz,aes(x=a, y=HDL))+

   geom_point(alpha=1,colour="#FFA54F")+

   geom_smooth(method = lm,colour="#8B658B")+

   #scale_color_brewer(palette = "Set1")+

   theme_bw()+

   labs(x="Ferritin",y="HDL.C",title="Pearson’s correlation test of ferritin and HDL.C")+

   annotate("text", x = 1000, y = 2.5, label = "r = -0.51",colour="black",size=4)

2. library(ggstatsplot)

 ggscatterstats(data = alldata,

               y = TRANSFUSION.UNIT,

                x = NPTXR,

                centrality.para = "mean",  #"mean" or "median"                         

               margins = "both",                                       

                xfill = "#D8BFD8",

                yfill = "#EEDD82",

                #line.size= ,

                line.color="#8B6969",

               point.color="#2F4F4F",

                marginal.size=4,

               marginal.type = "density", # "histogram", "boxplot", "density", "violin", "densigram")

                title = "Relationship between TRANSFUSION.UNIT and NPTXR")

b. ggcorrplot, 全部蛋白global correlation map 画法

ggcorrplot(cor(alldata))

2.  summary(lm(y~x),method=" ") %>%.[["coefficients"]]  正规线性回归

     (其实就是:a<-lm(y~x1+x2+...,data)

      plot(summary(lm(y~x),method=" ")) #绘图

3.  ggcor部分数据绘图:  数据类型为data.frame,纵坐标为各指标or各蛋白,行为观测值。

data <- fortify_cor(alldata[,10:11],alldata,cluster.type = "col")

ggcor<-ggcor(data,label_size=0.5) +

  geom_colour()+

  theme(axis.text.x = element_text(colour = "black",size = 4.7),

                                                        axis.text.y=element_text(size=5.5),

                                                        axis.ticks=element_blank())+

  geom_num(aes(num=r),colour="black",size=1.5)

4. corrr包画法

datasets::mtcars %>%

  correlate() %>%

  focus(-cyl, -vs, mirror = TRUE) %>%

  rearrange() %>%

  network_plot(min_cor = .2)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容