论文笔记1203

1. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets_2017

方法: We present a methodology that extracts and pools low- to mid-level features using a pretrained CNN and fuses them with handcrafted radiomic features computed using conventional CADx methods.

Features are extracted from the five max-pooling layers, averagepooled across the channel (third) dimension, and normalized with L2 norm. 

没啥用,利用VGG19进行特征提取,让后和传统特征融合将每个pooling层的特征输出1*1*dim维度的特征,使用了L2规则



2. A Method of Ultrasonic Image Recognition for Thyroid Papillary Carcinoma Based on Deep Convolution Neural Network_14 March 2018

该团队还有一篇文章基本一样,数据:307个人

the Fast Region-based Convolutional Network method (FasterRCNN) network is `improved and normalized by connecting the fourth layer and the fifth layer` of the shared convolution layer in the Faster RCNN network. Then, a multi-scale ultrasound image is used at the time of input.

将VGG16的第四层和第五层连接,同时将多尺度的超声图像输入.

The experimental results show that compared with the original Faster RCNN network, the proposed method has higher recognition accuracy, shorter training time and higher efficiency in ultrasonic image recognition of thyroid papillary carcinoma.

与传统的FasterRCNN相比这个方法更好,时间短,更精确

本文VGG16连接图

使用原始FasterRCNN在本文map = 0.6,原因就是超声图像各种不如自然图像.

将层间连接之前使用L2 和尺度变化,然后输入多尺度的图像

Each tensor is normalized using L2, and normalization is accomplished within each pixel of the set feature tensor. After normalization, scaling is applied separately on each tensor.

Our experiments have proven that the feature in different size range can be learned through multi-scale image input, which increases the robustness, reduces the influence of down sampling on the feature representation, improves the extraction efficiency of the original feature of the image, and raises the accuracy of cancer feature recognition.


结果图



3. A Region Based Convolutional Network for Tumor Detection and Classification in Breast Mammography_MICCAI_2016

The third step divides the images based on a grid representation to multiple overlapping sub images (parts) which are then used to train and test a modified Faster-RCNN

为了解决小尺度肿瘤和对比度低问题将层间连接

features from lower levels of the CNN need to be taken into the account when making the decision as they are the only ones looking on the considered region proposals in the high enough resolution

类似三通道的FasterRCNN


网络结构



4. Automated Mass Detection in Mammograms Using Cascaded Deep Learning and Random Forests_2015

The first stage classifier consists of a multi-scale deep belief network that selects suspicious regions to be further processed by a two-level cascade of deep convolutional neural networks. The regions that survive this deep learning analysis are then processed by a two-level cascade of random forest classifiers that use morphological and texture features extracted from regions selected along the cascade. Finally, regions that survive the cascade of random forest classifiers are combined using connected component analysis to produce state-of-the-art results.



5. Automatic Colon Polyp Detection Using Region Based Deep CNN and Post Learning Approaches_2018

We use a deep-CNN model (Inception Resnet) as a transfer learning scheme in the detection system.

将FasterRCNN的特征提取用inception resnet实现,同时增加了一种尺度的anchor和更改阈值

Two versions of Inception Resnet have been introduced in [35] and we use a deeper version called Inception Resnet-v2.



6. Context-aware pedestrian detection especially for small-sized instances with Deconvolution Integrated Faster RCNN (DIF R-CNN)

解决行人检测中的小目标问题,利用解卷积引入新的环境特征,能够检测像素<50的人

Furthermore, the state-of-the-art CNN-based model (Inception-ResNet) is exploited to provide a rich and discriminative hierarchy of feature representations

Additionally, atrous convolution is adopted to enlarge the receptive field of the synthetic feature map

atrous convolution :稀疏卷积有洞的卷积


网络结构


atrous convolution 



7. Deep Learning for Automatic Detection of Abnormal Findings in Breast Mammography_2017


结构

结构也是三通道的FasterRCNN



8. Large scale deep learning for computer aided detection of mammographic lesions_2016

将手动选择的特征与cnn的特征结合,得到cnn学不到的特征

In this paper we provide a head-to-head comparison between a state-of-the art in mammography CAD system, relying on a manually designed feature set and a Convolutional Neural Network (CNN)



9. Liver Fibrosis Classification Based on Transfer Learning and FCNet for Ultrasound Images_2017

In this paper, we propose a novel liver fibrosis classification method based on transfer learning (TL) using VGGNet and a deep classifier called fully connected network (FCNet).



10. R-FCN: Object Detection via Region-based Fully Convolutional Networks_2016

与FasterRCNN那种基于区域的方法不同本文用卷积的方法计算位置

用于公开数据集的自然图像

Code is made publicly available at: https://github.com/daijifeng001/r-fcn.

our region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, we propose position-sensitive score maps to address a dilemma between translation-invariance in image classification and translation-variance in object detection.


11. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset_2015

利用多项式网络解决数据集过小的问题

In this work, a stacked DPN (S-DPN) algorithm is proposed to further improv the representation performance of the original DPN, and S-DPN is then applied to the task of textur feature learning for ultrasound based tumor classification with small dataset.


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • 看李笑来老师专栏《通往财富自由之路》的人大多都对这句话耳熟能详! 相信我,你并不孤独! 不知道也没关系,我们一起来...
    鹿女神奇阅读 183评论 2 2
  • 我很想学吹泡泡糖,我就求妈妈给我演示一遍,我觉得那个样子很好玩,可是我还是不会。于是妈妈就教我吹泡泡糖的技巧,先把...
    尘封_9ee6阅读 240评论 0 0
  • 今天又迎来了新一轮的国网公司资金检查,这次来的都是陕西公司的人员,到彭州来为期两天的检查。 按理说,今年的检查够多...
    刘小妹_7ea9阅读 196评论 0 0
  • 《最后的演讲》内容概要:专栏作家杰夫利·里斯洛探访了兰迪教授53次,写成了这本精彩丰富又让人动容的——《最后的演讲...
    小蛐阅读 614评论 0 0