对任何一个高可用存储方案,我们需要从以下几个方面去进行思考和分析:
数据如何复制?
各个节点的职责是什么?
如何应对复制延迟?
如何应对复制中断?
常见的高可用存储架构有主备、主从、主主、集群、分区,每一种又可以根据业务的需求进行一些特殊的定制化功能,由此衍生出更多的变种。由于不同业务的定制功能难以通用化,今天我将针对业界通用的方案,来分析常见的双机高可用架构:主备、主从、主备 / 主从切换和主主。
一、主备复制
主备复制是最常见也是最简单的一种存储高可用方案,几乎所有的存储系统都提供了主备复制的功能,例如 MySQL、Redis、MongoDB 等。
1. 基本实现
下面是标准的主备方案结构图:
其整体架构比较简单,主备架构中的“备机”主要还是起到一个备份作用,并不承担实际的业务读写操作,如果要把备机改为主机,需要人工操作。
2. 优缺点分析
优点就是简单,表现有:
对于客户端来说,不需要感知备机的存在,即使灾难恢复后,原来的备机被人工修改为主机后,对于客户端来说,只是认为主机的地址换了而已,无须知道是原来的备机升级为主机。
对于主机和备机来说,双方只需要进行数据复制即可,无须进行状态判断和主备切换这类复杂的操作。
缺点主要有:
备机仅仅只为备份,并没有提供读写操作,硬件成本上有浪费。
故障后需要人工干预,无法自动恢复。人工处理的效率是很低的,可能打电话找到能够操作的人就耗费了 10 分钟,甚至如果是深更半夜,出了故障都没人知道。人工在执行恢复操作的过程中也容易出错,因为这类操作并不常见,可能 1 年就 2、3 次,实际操作的时候很可能遇到各种意想不到的问题。
综合主备复制架构的优缺点,内部的后台管理系统使用主备复制架构的情况会比较多,例如学生管理系统、员工管理系统、假期管理系统等,因为这类系统的数据变更频率低,即使在某些场景下丢失数据,也可以通过人工的方式补全。
二、主从复制
主从复制和主备复制只有一字之差,“从”意思是“随从、仆从”,“备”的意思是备份。我们可以理解为仆从是要帮主人干活的,这里的干活就是承担“读”的操作。也就是说,主机负责读写操作,从机只负责读操作,不负责写操作。
1. 基本实现
下面是标准的主从复制架构:
与主备复制架构比较类似,主要的差别点在于从机正常情况下也是要提供读的操作。
2. 优缺点分析
主从复制与主备复制相比,优点有:
主从复制在主机故障时,读操作相关的业务可以继续运行。
主从复制架构的从机提供读操作,发挥了硬件的性能。
缺点有:
主从复制架构中,客户端需要感知主从关系,并将不同的操作发给不同的机器进行处理,复杂度比主备复制要高。
主从复制架构中,从机提供读业务,如果主从复制延迟比较大,业务会因为数据不一致出现问题。
故障时需要人工干预。
综合主从复制的优缺点,一般情况下,写少读多的业务使用主从复制的存储架构比较多。例如,论坛、BBS、新闻网站这类业务,此类业务的读操作数量是写操作数量的 10 倍甚至 100 倍以上。
三、双机切换
1. 设计关键
主备复制和主从复制方案存在两个共性的问题:
主机故障后,无法进行写操作。
如果主机无法恢复,需要人工指定新的主机角色。
双机切换就是为了解决这两个问题而产生的,包括主备切换和主从切换两种方案。简单来说,这两个方案就是在原有方案的基础上增加“切换”功能,即系统自动决定主机角色,并完成角色切换。由于主备切换和主从切换在切换的设计上没有差别,我接下来以主备切换为例,一起来看看双机切换架构是如何实现的。
要实现一个完善的切换方案,必须考虑这几个关键的设计点:
主备间状态判断
主要包括两方面:状态传递的渠道,以及状态检测的内容。
状态传递的渠道:是相互间互相连接,还是第三方仲裁?
状态检测的内容:例如机器是否掉电、进程是否存在、响应是否缓慢等。
切换决策
主要包括几方面:切换时机、切换策略、自动程度。
切换时机:什么情况下备机应该升级为主机?是机器掉电后备机才升级,还是主机上的进程不存在就升级,还是主机响应时间超过 2 秒就升级,还是 3 分钟内主机连续重启 3 次就升级等。
切换策略:原来的主机故障恢复后,要再次切换,确保原来的主机继续做主机,还是原来的主机故障恢复后自动成为新的备机?
自动程度:切换是完全自动的,还是半自动的?例如,系统判断当前需要切换,但需要人工做最终的确认操作(例如,单击一下“切换”按钮)。
数据冲突解决
当原有故障的主机恢复后,新旧主机之间可能存在数据冲突。例如,用户在旧主机上新增了一条 ID 为 100 的数据,这个数据还没有复制到旧的备机,此时发生了切换,旧的备机升级为新的主机,用户又在新的主机上新增了一条 ID 为 100 的数据,当旧的故障主机恢复后,这两条 ID 都为 100 的数据,应该怎么处理?
以上设计点并没有放之四海而皆准的答案,不同的业务要求不一样,所以切换方案比复制方案不只是多了一个切换功能那么简单,而是复杂度上升了一个量级。形象点来说,如果复制方案的代码是 1000 行,那么切换方案的代码可能就是 10000 行,多出来的那 9000 行就是用于实现上面我所讲的 3 个设计点的。
2. 常见架构
根据状态传递渠道的不同,常见的主备切换架构有三种形式:互连式、中介式和模拟式。
(1)互连式
故名思议,互连式就是指主备机直接建立状态传递的渠道,架构图请注意与主备复制架构对比。
你可以看到,在主备复制的架构基础上,主机和备机多了一个“状态传递”的通道,这个通道就是用来传递状态信息的。这个通道的具体实现可以有很多方式:
可以是网络连接(例如,各开一个端口),也可以是非网络连接(用串口线连接)。
可以是主机发送状态给备机,也可以是备机到主机来获取状态信息。
可以和数据复制通道共用,也可以独立一条通道。
状态传递通道可以是一条,也可以是多条,还可以是不同类型的通道混合(例如,网络 + 串口)。
为了充分利用切换方案能够自动决定主机这个优势,客户端这里也会有一些相应的改变,常见的方式有:
为了切换后不影响客户端的访问,主机和备机之间共享一个对客户端来说唯一的地址。例如虚拟 IP,主机需要绑定这个虚拟的 IP。
客户端同时记录主备机的地址,哪个能访问就访问哪个;备机虽然能收到客户端的操作请求,但是会直接拒绝,拒绝的原因就是“备机不对外提供服务”。
缺点在于:
如果状态传递的通道本身有故障(例如,网线被人不小心踢掉了),那么备机也会认为主机故障了从而将自己升级为主机,而此时主机并没有故障,最终就可能出现两个主机。
虽然可以通过增加多个通道来增强状态传递的可靠性,但这样做只是降低了通道故障概率而已,不能从根本上解决这个缺点,而且通道越多,后续的状态决策会更加复杂,因为对备机来说,可能从不同的通道收到了不同甚至矛盾的状态信息。
(2)中介式
中介式指的是在主备两者之外引入第三方中介,主备机之间不直接连接,而都去连接中介,并且通过中介来传递状态信息,其架构图如下:
对比一下互连式切换架构,我们可以看到,主机和备机不再通过互联通道传递状态信息,而是都将状态上报给中介这一角色。单纯从架构上看,中介式似乎比互连式更加复杂了,首先要引入中介,然后要各自上报状态。然而事实上,中介式架构在状态传递和决策上却更加简单了,这是为何呢?
连接管理更简单:主备机无须再建立和管理多种类型的状态传递连接通道,只要连接到中介即可,实际上是降低了主备机的连接管理复杂度。
例如,互连式要求主机开一个监听端口,备机来获取状态信息;或者要求备机开一个监听端口,主机推送状态信息到备机;如果还采用了串口连接,则需要增加串口连接管理和数据读取。采用中介式后,主备机都只需要把状态信息发送给中介,或者从中介获取对方的状态信息。无论是发送还是获取,主备机都是作为中介的客户端去操作,复杂度会降低。
状态决策更简单:主备机的状态决策简单了,无须考虑多种类型的连接通道获取的状态信息如何决策的问题,只需要按照下面简单的算法即可完成状态决策。
无论是主机还是备机,初始状态都是备机,并且只要与中介断开连接,就将自己降级为备机,因此可能出现双备机的情况。
主机与中介断连后,中介能够立刻告知备机,备机将自己升级为主机。
如果是网络中断导致主机与中介断连,主机自己会降级为备机,网络恢复后,旧的主机以新的备机身份向中介上报自己的状态。
如果是掉电重启或者进程重启,旧的主机初始状态为备机,与中介恢复连接后,发现已经有主机了,保持自己备机状态不变。
主备机与中介连接都正常的情况下,按照实际的状态决定是否进行切换。例如,主机响应时间超过 3 秒就进行切换,主机降级为备机,备机升级为主机即可。
虽然中介式架构在状态传递和状态决策上更加简单,但并不意味着这种优点是没有代价的,其关键代价就在于如何实现中介本身的高可用。如果中介自己宕机了,整个系统就进入了双备的状态,写操作相关的业务就不可用了。这就陷入了一个递归的陷阱:为了实现高可用,我们引入中介,但中介本身又要求高可用,于是又要设计中介的高可用方案……如此递归下去就无穷无尽了。
MongoDB 的 Replica Set 采取的就是这种方式,其基本架构如下:
(http://img.my.csdn.net/uploads/201301/13/1358056331_2790.png)
MongoDB(M) 表示主节点,MongoDB(S) 表示备节点,MongoDB(A) 表示仲裁节点。主备节点存储数据,仲裁节点不存储数据。客户端同时连接主节点与备节点,不连接仲裁节点。
幸运的是,开源方案已经有比较成熟的中介式解决方案,例如 ZooKeeper 和 Keepalived。ZooKeeper 本身已经实现了高可用集群架构,因此已经帮我们解决了中介本身的可靠性问题,在工程实践中推荐基于 ZooKeeper 搭建中介式切换架构。
(3)模拟式
模拟式指主备机之间并不传递任何状态数据,而是备机模拟成一个客户端,向主机发起模拟的读写操作,根据读写操作的响应情况来判断主机的状态。其基本架构如下:
对比一下互连式切换架构,我们可以看到,主备机之间只有数据复制通道,而没有状态传递通道,备机通过模拟的读写操作来探测主机的状态,然后根据读写操作的响应情况来进行状态决策。
模拟式切换与互连式切换相比,优点是实现更加简单,因为省去了状态传递通道的建立和管理工作。
简单既是优点,同时也是缺点。因为模拟式读写操作获取的状态信息只有响应信息(例如,HTTP 404,超时、响应时间超过 3 秒等),没有互连式那样多样(除了响应信息,还可以包含 CPU 负载、I/O 负载、吞吐量、响应时间等),基于有限的状态来做状态决策,可能出现偏差。
四、主主复制
主主复制指的是两台机器都是主机,互相将数据复制给对方,客户端可以任意挑选其中一台机器进行读写操作,下面是基本架构图。
两台都是主机,不存在切换的概念。
客户端无须区分不同角色的主机,随便将读写操作发送给哪台主机都可以。
从上面的描述来看,主主复制架构从总体上来看要简单很多,无须状态信息传递,也无须状态决策和状态切换。复杂性:数据能够双向复制,而很多数据是不能双向复制的。例如:
用户注册后生成的用户 ID,如果按照数字增长,那就不能双向复制,否则就会出现 X 用户在主机 A 注册,分配的用户 ID 是 100,同时 Y 用户在主机 B 注册,分配的用户 ID 也是 100,这就出现了冲突。
库存不能双向复制。例如,一件商品库存 100 件,主机 A 上减了 1 件变成 99,主机 B 上减了 2 件变成 98,然后主机 A 将库存 99 复制到主机 B,主机 B 原有的库存 98 被覆盖,变成了 99,而实际上此时真正的库存是 97。类似的还有余额数据。
因此,主主复制架构对数据的设计有严格的要求,一般适合于那些临时性、可丢失、可覆盖的数据场景。例如,用户登录产生的 session 数据(可以重新登录生成)、用户行为的日志数据(可以丢失)、论坛的草稿数据(可以丢失)等。
小结
政府信息公开网站的信息存储系统,你会采取哪种架构?谈谈你的分析和理由。
评论:
政府信息网站使用主备或者主从架构就可以了。信息都是人工录入,可以补录。数据本来对实时性要求不高,所以出了故障人工修复也来得及。所以主备就够了,如果为了照顾形象可以用主从,保证主机故障后仍然可以查,不能新发