Principle of Locality I: Hacking the Continuum Mean-Field Technique in Network Modeling

Figure 1. Space-network created by Stephen Wolfram

Outline

  • What does "Continuum Mean-Field" mean ?
  • From Dynamics assumption to Stable Distribution
  • The Preferential Attachment Model
  • The Preferential Return Model
  • The Spatial-constrained Attachment Model
  • From Stable Distribution to Dynamics assumption

1. What does "Continuum Mean-Field" mean ?

  1. "Mean-Field": many -> one
    The complex interaction between a large number of components can be simplified into a single averaged effect of all the other individuals on any given one.

  2. "Continuum": discrete -> Continuous
    A discrete variables that is "smooth enough", i.e. increase by one unit in each period, such as time steps [1], spatial jumps [2-3], and population, can be viewed as a continuous geometric structure. Any measure on this structure, like degree [1], number of unique locations visited [2], and distance [3], can be described by differential equations.

2. From Dynamics assumption to Stable Distribution

2.1 The Preferential Attachment Model
Figure 2. An example network of the preferential attachment model
Figure 3. Time continuum
Geometric structure Measure Differential form
Time t Degree k

The "preferential attachment" assumption can be translated as

![Eq. 1](http://latex.codecogs.com/svg.latex?\frac{dk_j}{dt}=m\frac{k_j}{\sum^{all ,nodes} k_j}=m\frac{k_j}{\sum_{j=1}^N{k_j}}=m\frac{k_j}{2mt}=\frac{k_j}{2t}.)

In other words, we have

Eq. 2
Eq. 2

or

Eq. 3
Eq. 3

which gives

Eq. 4
Eq. 4

Considering the boundary condition (the purple node in Figure 2) j=t, k=m leads to

![Eq. 5](http://latex.codecogs.com/svg.latex?ln(m)=\frac{1}{2}ln(j)+c \rightarrow c=ln(m)-\frac{1}{2}lnj.)

Therefore, Eq. 4 reads

Eq. 6
Eq. 6

or

Eq. 7
Eq. 7

Now, here comes the most interesting step. Observe Figure 2 again, we find that all nodes on the right of the ith node (including the ith node itself) have a degree <= ki(t), whereas all nodes on the left have a degree > ki(t). It means that we can write the cumulative probability function as

![Eq. 8][eq8]
[eq8]:http://latex.codecogs.com/svg.latex?P(K\leq,k_j)=\frac{t-j}{t}=1-\frac{j}{t}=1-\frac{m2}{k_j2}=F(k_j),

and thus naturally we have the probability density function as

![Eq. 9][eq9]
[eq9]:http://latex.codecogs.com/svg.latex?f(k_j)=\frac{dF(k_j)}{dk_j}=\frac{2m2}{k_j3},

To summarize, PA predicts two scaling relationships, Eq. 7 and Eq. 9.

Now, let's summarize the steps:

  1. Define the quantity of interest y (e.g., degree k) and the background variable x (e.g., time t);
  2. Give the single-step assumption as differential equation dy/dx = f(x,y);
  3. Solve this differential equation to obtain y = g(x);
  4. Get the distribution P(Y<=y)=h(x)=h(g'(y))

This approach is very general and can be applied to any kind of social dynamics satisfying the "Continuum" and "Mean-Field" assumption.

2.2 The Preferential Return Model
Figure 4. An example network of the preferential return model
Figure 5. Interest continuum

The major (and very critical) difference between Preferential Return (PR) and Preferential Attachment (PA) is that, the number of nodes increase sub-linearly over time in PR. Therefore, in PR we have to choose either time or the interest space as the geometric background. Here we choose the latter and study the dynamics.

Besides this, PR use a linear function of degree (1+\lambda k) for calculating weights so that new nodes with zero degree may also be visited. We can call this variable votes (v=1+\lambda k) for it is vote and not degree that determine the probability directly.

Geometric structure Measure Differential form
Interest set M Degree k dk/dM = (dk/dt) * (dt/dM)

As shown by Figure 3, nodes are sorted by their visiting orders. The jth node is firstly visited at tj. In other words, util time ti there are i nodes being visited, and each node is visited by kj times. We have

![Eq. 10](http://latex.codecogs.com/svg.latex?\frac{di}{dt}=\frac{\sum^{new ,nodes} v_j}{\sum^{all ,nodes} v_j}=\frac{\sum_{j=i+1}^{M}(1+\lambda k_j)}{\sum_{j=1}^M{(1+\lambda k_j)}}=\frac{M-i}{M+\lambda \sum _{j=1}^Mk_j}=\frac{M-i}{M+\lambda t}.)

Re-arrange it to obtain

![Eq. 11](http://latex.codecogs.com/svg.latex?\frac{1}{M-i}di=\frac{1}{M+\lambda t}dt,)

or

![Eq. 12](http://latex.codecogs.com/svg.latex?\int\frac{1}{M-i}di=\int\frac{1}{M+\lambda t}dt,)

which gives

![Eq. 13](http://latex.codecogs.com/svg.latex?ln(M-i)=-\frac{1}{\lambda}ln(M+\lambda t)+c.)

or

![Eq. 14](http://latex.codecogs.com/svg.latex?i=M-e^{-c}(\frac{1}{M+\lambda t})^{\frac{1}{\lambda}})

Considering the boundary condition when t=1, i=1,

![Eq. 15](http://latex.codecogs.com/svg.latex?ln(M-1)=-\frac{1}{\lambda}ln(M+1)+c \rightarrow e{-c}=(M-1)(M+\lambda){\frac{1}{\lambda}}.)

Therefore Eq 14 reads

![Eq. 16](http://latex.codecogs.com/svg.latex?i=M-(M-1)(\frac{M+\lambda}{M+\lambda t})^{\frac{1}{\lambda}})

or

Eq. 17
Eq. 17

Eq. 17 predicts the waiting time before the first visit of the jth node.

Meanwhile, we derive the increase of degree over time as

![Eq. 18](http://latex.codecogs.com/svg.latex?\frac{dk_j}{dt}=1*\frac{v_j}{\sum^{total ,nodes} v_j}=\frac{1+\lambda k_{j}}{\sum_{j=1}^M{(1+\lambda k_{j})}}=\frac{1+\lambda k_{j}}{M+\lambda t}.)

Re-arrange it to obtain

![Eq. 19](http://latex.codecogs.com/svg.latex?\frac{1}{1+\lambda k_{j}}dk_{j}=\frac{1}{M+\lambda t}dt,)

or

![Eq. 20](http://latex.codecogs.com/svg.latex?\int\frac{1}{1+\lambda k_{j}}dk_j=\int\frac{1}{M+\lambda t}dt,)

which gives

![Eq. 21](http://latex.codecogs.com/svg.latex?ln(1+\lambda k_{j})=ln(M+\lambda t)+c.)

Considering the boundary condition when t=tj, kj=1

![Eq. 22](http://latex.codecogs.com/svg.latex?ln(1+ \lambda)=ln(M+\lambda t_j)+c \rightarrow c=ln(1+ \lambda)-ln(M+\lambda t_j).)

Therefore, Eq. 21 reads

![Eq. 23](http://latex.codecogs.com/svg.latex?ln(1+\lambda k_j)=ln(M+\lambda t)+ln(1+ \lambda)-ln(M+\lambda t_j).)

or

![Eq. 24](http://latex.codecogs.com/svg.latex?k_{j}=\frac{\lambda+1}{\lambda}\frac{\lambda t+M}{\lambda t_j+M}-\frac{1}{\lambda})

Considering the condition tj=g(j) given by Eq. 17, we derive

![Eq. 25](http://latex.codecogs.com/svg.latex?k_{j}=\frac{\lambda+1}{\lambda}\frac{\lambda t+M}{\lambda+M}(\frac{M-j}{M-1})^{\lambda}-\frac{1}{\lambda})

Considering the current time step ti=g(i) we also have

Eq. 26
Eq. 26

When j=i, kj=ki=1.

Again, here comes the most interesting step. In Figure 3 we find that all nodes on the right of the ith node (including the ith node itself) have a degree <= ki, whereas all nodes on the left have a degree > ki. It means that we can write the cumulative probability function as

![Eq. 27][eq27]
[eq27]:http://latex.codecogs.com/svg.latex?P(K\leq,k_i)=\frac{M-j}{M}\approx\frac{M-j}{M-1}=[\frac{\lambda}{\lambda+1}\frac{\lambda+M}{\lambda{t}+M}(k+\frac{1}{\lambda})]^{\frac{1}{\lambda}}=F(k_i),

and thus naturally we have the probability density function as

![Eq. 28][eq28]
[eq28]:http://latex.codecogs.com/svg.latex?f(k_i)=\frac{dF(k_i)}{dk_i}=\frac{1}{\lambda}(\frac{\lambda}{\lambda+1}\frac{\lambda+M}{\lambda{t}+M}){\frac{1}{\lambda}}(k+\frac{1}{\lambda}){\frac{1}{\lambda}-1},

To summarize, PR predicts three scaling relationships, Eq. 16, Eq. 26, and Eq. 28.

2.3 The Spatial-constrained Attachment Model
Figure 6. An example network of the space-constrained attachment model

Figure 7. Similarity continuum

The expected increase of the radius R(t), which is obviously a function of time t, is

![Eq. 29](http://latex.codecogs.com/svg.latex?\frac{dR(t)}{dt}=\Delta R(t)=\int_0rxf(x)dx=\int_0rx\frac{1}{L}dx=\frac{r^2}{2L}.)

which gives

Eq. 30
Eq. 30

in which we can consider the boundary condition t=2, R(t)<=r to obtain that c<=r.

If the similarity space is D dimensional, then the volume of the space

![Eq. 31](http://latex.codecogs.com/svg.latex?V(t)\sim R(t)^D\sim t^D,)

As the radius increase linearly with time, the number of nodes at distance rho from the origin is approximately R(t) - rho, which is the time steps passed by after the time step rho:

![Eq. 32](http://latex.codecogs.com/svg.latex?\mu_\rho(t)\sim R(t)-\rho,)

Therefore, the total number of nodes in one dimensional space is

![Eq. 33](http://latex.codecogs.com/svg.latex?N(t)\sim\int_0^R(R-\rho)d\rho = \frac{R(t)^2}{2},)

If the similarity space is D dimensional, then

![Eq. 33](http://latex.codecogs.com/svg.latex?N(t)\sim\int_0R(R-\rho)Dd\rho = \frac{R(t)^{D+1}}{D+1}\sim t^{D+1},)

Meanwhile, we know that for every "local area" of the space with distance r, n nodes will be fully connected to each other, generating n^2/2 undirected links, therefore the total number of edges

![Eq. 34](http://latex.codecogs.com/svg.latex?E(t)\sim\int_0^RN(t) d\rho \sim R(t)^{D+2} \sim t^{D+2},)

Putting these results together, we have the following scaling relationships:

![Eq. 35](http://latex.codecogs.com/svg.latex?N(t)\sim V(t)^{\frac{D+1}{D}},)

and

![Eq. 36](http://latex.codecogs.com/svg.latex?E(t)\sim N(t)^{\frac{D+2}{D+1}}.)

That is, the super-linear scaling between nodes and covered areas, and the super-linear scaling between edges and nodes.

3. From Stable Distribution to Dynamics assumption

References

[1] What Is Spacetime, Really? by Stephen Wolfram.
[2] Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439), 509-512.
[3] Zhao, Y. M., Zeng, A., Yan, X. Y., Wang, W. X., & Lai, Y. C. (2015). Universal underpinning of human mobility in the real world and cyberspace. arXiv preprint arXiv:1512.04669.
[4] Zhang, J., Li, X., Wang, X., Wang, W. X., & Wu, L. (2015). Scaling behaviours in the growth of networked systems and their geometric origins.Scientific reports, 5.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容

  • 大概一个月前的某一天,我被同一个小区的宝妈拉入了一个微信群。几年前,我们曾住同一个楼不同的单元,因为遛娃而相互认识...
    番茄狂想阅读 712评论 6 11
  • 城南旧燕寻何渺, 蝶舞丛中飞愈小。 未梦一簪秋露凉, 流光默默涂青草。 #飞云##未名# 2017.1.10
    云烟深处YY阅读 181评论 0 0
  • 今天简书首页,看到了一篇关于写作的文章,让我有醍醐灌顶之感。 《写作的价值,你或许还不知道有这些吧》作者:贝小鱼 ...
    明小羽阅读 212评论 0 1
  • 刚毕业的我只是一张白纸,面对人情世俗中的套路,虚伪,两面三刀很是不屑。 然而生活于俗世的我们却不得不接受并学会这样...
    琴声呜咽阅读 278评论 0 0