HashMap(JDK1.8)增强扩展

我们在这篇文章中HashMap源码解析(JDK1.8)对HashMap进行了学习,在此基础上,继续总结HashMap的扩展问题,加深理解。

1.为什么capacity总是2的幂次方?

/**
     * HashMap 的table数组默认初始容量为 16,必须为 2 的 n 次方 
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

capacity默认为2的4次方,当我们初始化时传入的capacity不是2的次方会发生什么呢?

static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

在这里我们看到经过一系列操作把我们传入的非2的次方的cap,最终转化为了大于cap的最接近的2的次方值,比如

3—>4
20—>32
100—128

HashMap中存储数据table的index是由key的Hash值决定的.在HashMap存储数据时,我们期望数据能均匀分布,以防止哈希冲突.自然而然我们就会想到去用%取余的操作来实现我们这一构想,取余操作会存在于每次hash计算包括扩容时的重新hash。这里要了解到一个知识:

取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作.

再来看看table的index的计算规则:

index = e.hash & (newCap - 1)
等价于:
index = e.hash % newCap

采用二进制位操作&,相对于%,能够极大地提高运算效率,这就是cap的值被要求为2幂次的原因.

2.哈希碰撞和红黑树

上文中讲到,HashMap是通过计算key的hashCode来找到记录的存储位置的,由于hash函数不会太完美的原因,势必要造成多个记录的key的hashCode一样的情况,完美情况下,我们希望每一个数组位置上仅有一个记录,但是很多情况下一个数组位置上会落入多个记录,也就是哈希冲突。

2059840-8386849414328b14.png

哈希碰撞会对 hashMap 的性能带来灾难性的影响。如果多个 hashCode() 的值落到同一个桶内的时候,这些值是存储到一个链表中的。最坏的情况下,所有的 key 都映射到同一个桶中,这样 hashmap 就退化成了一个链表——查找时间从 O(1) 到 O(n)。
JDK1.8HashMap 的红黑树是这样解决的:HashMap在链表的长度大于8的时候就会将链表转换为红黑树这种数据结构,红黑树的查询效率高达O(lgN),也就是说,复杂度降了一个数量级。如果哈希值相等,HashMap 希望 key 值最好是实现了 Comparable 接口的,这样它可以按照顺序来进行插入。这对 HashMap 的 key 来说并不是必须的,不过如果实现了当然最好。如果没有实现这个接口,在出现严重的哈希碰撞的时候,性能也是很堪忧的。

3.RESIZE扩容优化

在JDK1.7中扩容时,会将所有的元素重新计算hash散列到新的table数组位置,如图

jdk1.7扩容例图.png

JDK1.8对此做了一些优化:

因为我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。

怎么理解呢?例如我们从16扩展为32时,具体的变化如下所示:

ceb6e6ac-d93b-11e4-98e7-c5a5a07da8c4.png

因此元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

519be432-d93c-11e4-85bb-dff0a03af9d3.png

因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。

4.hashCode()和equals()

hashCode() 是干嘛的?什么时候重写 equals() 方法啊?
总的来说,Java中的集合(Collection)有两类,一类是List,再有一类是Set。前者集合内的元素是有序的,元素可以重复;后者元素无序,但元素不可重复。要想保证元素不重复,可两个元素是否重复应该依据什么来判断呢?这就是Object.equals方法了。
但是,如果每增加一个元素就检查一 次,那么当元素很多时,后添加到集合中的元素比较的次数就非常多了。也就是说,如果集合中现在已经有1000个元素,那么第1001个元素加入集合时,它就要调用1000次equals方法。这显然会大大降低效率。
Java采用了哈希表的原理。哈希算法也称为散列算法,是将数据依特定算法直接指定到一个地址上。这样一来,当集合要添加新的元素时,先调用这个元素的hashCode方法,就一下子能定位到它应该放置的物理位置上。如果这个位置上没有元素,它就可以 直接存储在这个位置上,不用再进行任何比较了;如果这个位置上已经有元素了,就调用它的equals方法与新元素进行比较,相同的话就不存了;不相同,也就是发生了Hash key相同导致冲突的情况,那么就在这个Hash key的地方产生一个链表,将所有产生相同hashcode的对象放到这个单链表上去,串在一起。所以这里存在一个冲突解决的问题(很少出现)。这样一来实际调用equals方法的次数就大大降低了,几乎只需要一两次。

所以,Java对于eqauls方法和hashCode方法是这样规定的:

1、如果两个对象相等,那么它们的hashCode值一定要相等;
2、如果两个对象的hashCode相等,它们并不一定相等(在同一个链表上)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 前言 这次我和大家一起学习HashMap,HashMap我们在工作中经常会使用,而且面试中也很频繁会问到,因为它里...
    liangzzz阅读 7,965评论 7 102
  • #幸福是需要修出来的~每天进步1%~幸福实修08班~13-罗洁-余姚# 20170719(31/99) 【幸福三朵...
    幸福实修08班罗洁阅读 61评论 0 2
  • 光阴如梭,生命短暂,世事沉浮,悲欢离合,人生百态,每个人都在竭尽所能地去寻求真理与解脱。求之不得,便容易陷入焦躁与...
    奔波狗阅读 369评论 0 1
  • 花钱雇保姆,用不做家务省下来的时间去学习自己想学习的东西,难道不是更合算吗?相同的时间,你做家务获得的东西和你学习...
    H_C阅读 251评论 0 0
  • 节奏感就是指界面看起来棱角分明。看起来富有层次感。通常来说,用户喜欢看到的版面有节奏感。如何使版面富有节奏感。下面...
    博为峰51Code教研组阅读 920评论 0 0