机器学习 西瓜书 Day10 聚类(上)

p197 - p201
Day09偷懒了,所以兑现flag,今天多看一些。

第九章 聚类

9.1 聚类任务

无监督学习:label未知。
研究最多,应用最广的是聚类。

聚类将样本划分为若干个不相交的子集:每个子集称为一个“

聚类算法将D划分为k个不相交的簇,C1,C2,..Ck
用λj 表示xj的簇标记。

两个基本问题:性能度量,距离计算

9.2 性能度量

结果咋才叫好? 聚类结果的簇内相似度高且簇间相似度低。

性能度量的两大类:
1)与某个参考模型进行比较,称为外部指标
2)直接考察而不利用参考模型,称为内部指标

定义abcd,a = |SS|,b = |SD|..
基于abcd定义了一些外部指标:
Jaccard系数(JC),FM指数(FMI),Rand指数(RI)。越大越好

dist:两个样本的距离。
μ:簇的中心点。
avg(C):簇C内样本间平均距离、
diam(C):簇C内样本最远距离
dmin
dcen

基于以上导出内部指标,DB指数(DBI),Dunn(DI)。
DBI越小越好,DI越大越好。

9.3 距离计算

如何计算dist?

距离要满足一些性质:p199-200 。
值得注意的是直递性

给定两个样本,最常用的是闵可夫斯基距离
p= 2 欧氏距离
p = 1 曼哈顿距离

Mink distance适用于有序属性,如(1,2,3),而不是(飞机,货车,轮船)

对无序属性可采用VDM距离

还有需注意的是:
用于度量相似性而定义的距离不一定非要满足那些性质,尤其是直递性。
如人、马、人马。
人 like 人马
马 like 人马
但人和马距离大。
不满足直递性。
这样的距离成为“非度量距离”。

因此,在现实任务中,有必要基于数据样本来确定合适的距离计算式,可通过“距离度量学习”来实现

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容