8. 非度量多维尺度分析

非度量多维尺度法(NMDS)是一种将多维空间的研究对象(样本或变量)简化到低维空间进行定位、分析和归类,同时又保留对象间原始关系的数据分析方法。

适用于无法获得研究对象间精确的相似性或相异性数据,仅能得到他们之间等级关系数据的情形。换句话说,当资料不适合直接进行变量型多维尺度分析时,对其进行变量变换,再采用变量型多维尺度分析。其特点是根据样品中包含的物种信息,以点的形式反映在多维空间上,而对不同样品间的差异程度,则是通过点与点间的距离体现的,最终获得样品的空间定位点图;

另外,针对分离度不好的样品,spider plot 可能会有奇效。

示例

Non-metric multidimensional scaling (NMDS) plot of β-diversity based on Bray-Curtis dissimilarities in the bacteriome of the piglet GI tract. Ellipses indicate 1 standard deviation from organ centroid and spiders are drawn to GI tract region centroid. Colors indicate GI tract region, symbols indicate litter, and ellipses line types indicate specific organs of the upper and lower GI.

脚本

数据样式

  1. OTU丰度数据就是一般OTU表或注释后的OTU丰度表,每一行为一个OTU,每一列为一个样品。
  2. 分组数据为跟样品一一对应的分组数据。

Notice:利用OTU表做NMDS时,可以获得(样本+物种)两种得分信息,能够找到更多的潜在信息。


library(vegan)
library(ggplot2)

# data --------------------------------------------------------------------

set.seed(13)
otu <- matrix(sample(c(0:200), 1200, replace = TRUE),
              ncol = 12, nrow = 100,
              dimnames = list(
                row_names = paste0("OTU", seq(1:100)),
                col_names = paste0("sample", seq(1:12))
              ))

groups <- data.frame(
  sample = paste0("sample", seq(1:12)),
  sites = rep(c("root", "soil", "rhizosphere"), 4)
)
# hellinger-transform: square root of method = "total"
otu <- t(otu) 
hell_otu <- decostand(otu, "hell") 

# The number of points n should be n > 2*k + 1
# default k = 2
NMDS <- metaMDS(hell_otu, k = 4, distance = "bray")

# print NMDS
# stress 应该越小越好,通常阈值为0.2
NMDS

# Get Species or Site Scores from an Ordination
score_species <- scores(NMDS,  display = "species")
score_sites <- scores(NMDS,  display = "sites")

# get the stress value
stress <- round(NMDS$stress, 4)

# adds group date
# 有时groups中的sample 和score 的结果顺序不一样
# 推荐使用merge 或者 match 函数合并数据

plot_data <- cbind(as.data.frame(score_sites), groups)


# set data for spider plot ------------------------------------------------

# calculate the center of NMDS1, NMDS2, according to groups
cent <- aggregate(cbind(NMDS1, NMDS2) ~ sites, 
                  data = plot_data, FUN = mean)

# summarise_if 有利于自动化 
plot_data %>% 
  group_by(sites) %>% 
  summarise_if(is.numeric, mean)

cent <- setNames(cent, c("sites", "oNMDS1", "oNMDS2"))
spider_data <- merge(plot_data, cent, by = "sites", sort = FALSE)

# 设置坐标轴刻度label
theme <- function(){
  list(scale_x_continuous(breaks = seq(from = -0.1, 
                                       to = 0.1, 
                                       by = 0.05), 
                          labels = seq(from = -0.1, 
                                       to = 0.1, 
                                       by = 0.05)),
       scale_y_continuous(breaks = seq(from = -0.1, 
                                       to = 0.1, 
                                       by = 0.05), 
                          labels = seq(from = -0.1, 
                                       to = 0.1, 
                                       by = 0.05)))
}

# 可视化
ggplot(plot_data, aes(x = NMDS1, y = NMDS2, 
                      color = sites)) + 
  geom_point() + 
  coord_fixed() + 
  stat_ellipse()

ggplot(spider_data, aes(x = NMDS1, y = NMDS2, 
                        color = sites)) + 
  geom_segment(aes(xend = oNMDS1, yend = oNMDS2)) +
  geom_point() +
  geom_point()  

NMDS结果评估

通常情况下我们可以根据应力值来判断排序模型的合理性,应力值(Stress)最好不要大于0.2。
此外,还可以通过goodness()和stressplot() {vegan}来评估NMDS拟合优度。

# Shepard图: 若R2越大,则NMDS结果越合理
stressplot(NMDS, main = "Shepard Plot")
gof <- goodness(NMDS1)
plot(NMDS, display = "sites", type = "t", main = "goodness of fit statistic")
points(NMDS, cex = gof * 200, col = "red")

Reference

Arfken AM, Frey JF, Ramsay TG, Summers KL. Yeasts of Burden: Exploring the Mycobiome-Bacteriome of the Piglet GI Tract. Front Microbiol. 2019 Oct 8;10:2286. doi: 10.3389/fmicb.2019.02286

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容