箱形图(Box-plot)
又称为盒须图、盒式图或箱线图
是一种用作显示一组数据分散情况资料的统计图,因形状如箱子而得名。它能显示出一组数据的最大值、最小值、中位数、及上下四分位数。
箱形图绘制须使用常用的统计量,能提供有关数据位置和分散情况的关键信息,尤其在比较不同的母体数据时更可表现其差异。
箱形图的绘制主要包含六个数据节点,需要先将数据从大到小进行排列,然后分别计算出它的上边缘,上四分位数,中位数,下四分位数,下边缘,还有一个异常值。
计算过程:
计算上四分位数(Q3),中位数,下四分位数(Q1)
计算上四分位数和下四分位数之间的差值,即四分位数差(IQR, interquartile range)Q3-Q1
绘制箱线图的上下范围,上限为上四分位数,下限为下四分位数。在箱子内部中位数的位置绘制横线。
大于上四分位数1.5倍四分位数差的值,或者小于下四分位数1.5倍四分位数差的值,划为异常值(outliers)。
异常值之外,最靠近上边缘和下边缘的两个值处,画横线,作为箱线图的触须。
极端异常值,即超出四分位数差3倍距离的异常值,用实心点表示;较为温和的异常值,即处于1.5倍-3倍四分位数差之间的异常值,用空心点表示。
为箱线图添加名称,数轴等.
最简盒型图
import matplotlib.pyplot as plt
import numpy as np
all_data = [np.random.normal(0, std, 100) for std in range(1, 4)]
fig = plt.figure(figsize=(8, 6))
plt.boxplot(all_data,
notch=False, # box instead of notch shape
sym='rs', # red squares for outliers
vert=True) # vertical box aligmnent
plt.xticks([y + 1 for y in range(len(all_data))], ['x1', 'x2', 'x3'])
plt.xlabel('measurement x')
t = plt.title('Box plot')
plt.show()
自定义颜色填充盒形图
import matplotlib.pyplot as plt
import numpy as np
all_data = [np.random.normal(0, std, 100) for std in range(1, 4)]
fig = plt.figure(figsize=(8, 6))
bplot = plt.boxplot(all_data,
notch=False, # notch shape
vert=True, # vertical box aligmnent
patch_artist=True) # fill with color
colors = ['pink', 'lightblue', 'lightgreen']
for patch, color in zip(bplot['boxes'], colors):
patch.set_facecolor(color)
plt.xticks([y + 1 for y in range(len(all_data))], ['x1', 'x2', 'x3'])
plt.xlabel('measurement x')
t = plt.title('Box plot')
plt.show()
小提琴图
小提琴图 (Violin Plot)是用来展示多组数据的分布状态以及概率密度。这种图表结合了箱形图和密度图的特征,主要用来显示数据的分布形状。跟箱形图类似,但是在密度层面展示更好。在数据量非常大不方便一个一个展示的时候小提琴图特别适用。
小提琴图概念图
import matplotlib.pyplot as plt
import numpy as np
fig, axes = plt.subplots(figsize=(12, 5))
all_data = [np.random.normal(0, std, 100) for std in range(6, 10)]
axes.violinplot(all_data,
showmeans=False,
showmedians=True
)
axes.set_title('violin plot')
# adding horizontal grid lines
axes.yaxis.grid(True)
axes.set_xticks([y + 1 for y in range(len(all_data))], )
axes.set_xlabel('xlabel')
axes.set_ylabel('ylabel')
plt.setp(axes, xticks=[y + 1 for y in range(len(all_data))],
xticklabels=['x1', 'x2', 'x3', 'x4'],
)
plt.show()