问题描述
When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A social cluster is a set of people who have some of their hobbies in common. You are supposed to find all the clusters.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤1000), the total number of people in a social network. Hence the people are numbered from 1 to N. Then N lines follow, each gives the hobby list of a person in the format:Ki: hi[1] hi[2] ... hi[Ki]where Ki(>0) is the number of hobbies, and hi[j] is the index of the j-th hobby, which is an integer in [1, 1000].
Output Specification:
For each case, print in one line the total number of clusters in the network. Then in the second line, print the numbers of people in the clusters in non-increasing order. The numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
解决方法
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
const int maxn = 1001;
//并查集
int ufs[maxn] = {0};
//确定集合内的关系
int course[maxn] = {0};
//确定集合的个数
int isRoot[maxn] = {0};
//由大到小的比较函数
bool cmp(int a, int b)
{
return a > b;
}
//初始化并查集
void initUfs(int n)
{
for (int i = 1; i <= n; i++)
{
ufs[i] = i;
}
}
//查询--路径压缩提升之后的查询效率
int findFather(int x)
{
int temp = x;
while (ufs[x] != x)
{
x = ufs[x];
}
while (temp != ufs[temp])
{
int y = temp;
temp = ufs[temp];
ufs[y] = x;
}
return x;
}
// Union 并
int Union(int x, int y)
{
int root1 = findFather(x);
int root2 = findFather(y);
if (root1 == root2)
{
return 0;
}
else
{
ufs[root1] = root2;
return 1;
}
}
int main(void)
{
int num = 0, res = 0;
scanf("%d", &num);
initUfs(num);
for (int i = 1; i <= num; i++)
{
int activity = 0;
int h = 0;
scanf("%d:", &activity);
for (int j = 1; j <= activity; j++)
{
scanf("%d", &h);
/*
利用关系合并集合
*/
if (course[h] == 0)
{
course[h] = i;
}
Union(i, findFather(course[h]));
}
}
for (int k = 1; k <= num; k++)
{
//记录集合中的个数
isRoot[findFather(k)]++;
if (ufs[k] == k)
{
res++;
}
}
sort(isRoot + 1, isRoot + num + 1, cmp);
printf("%d\n", res);
for (int k = 1; k <= res; k++)
{
printf("%d", isRoot[k]);
if (k != res)
printf(" ");
}
return 0;
}
基本策略
- 并查集的简单应用