Python 操作 HDF5文件

Matlab操作HDF5文件中已经详细介绍了HDF5文件已经利用Matlab对其进行操作的方法。这篇文章总结一下如何在Python下使用HDF5文件。我们仍然按照Matlab操作HDF5文件的顺序进行,分别是创建HDF5文件写入数据读取数据

Python下的HDF5文件依赖h5py工具包

创建文件和数据集

使用`h5py.File()方法创建hdf5文件

h5file = h5py.File(filename,'w')

然后在此基础上创建数据集

X = h5file.create_dataset(shape=(0,args.patch_size,args.patch_size),             #数据集的维度
                              maxshape = (None,args.patch_size,args.patch_size),                #数据集的允许最大维度 
                              dtype=float,compression='gzip',name='train',                      #数据类型、是否压缩,以及数据集的名字
                              chunks=(args.chunk_size,args.patch_size,args.patch_size))         #分块存储,每一分块的大小

最为关系的两个参数为shape和maxshape,很显然我们希望数据集的某一个维度是可以扩展的,所以在maxshape中,将希望扩展的维度标记为None,其他维度和shape参数里面的一样。还有一点值得注意的是,使用compression='gzip'以后,整个数据集能够被极大的压缩,对比较大的数据集非常又用,并且在数据读写的时候,不用用户显式的解码。

写数据集

在使用上面的creat_dataset创建了dataset以后,读写数据集就如同读写numpy数组一样方便,比如上面的函数定义了数据集'train',也就是变量X以后,可以下面的方法来读写:

data = np.zeros((100,args.patch_size,arg))
X[0:100,:,:] = data

在前面创建数据集的时候,我们定义shape = (args.chunk_size,args.patch_size,args.patch_size),如果有更多的数据,怎么办呢?
可以使用resize方法来扩展在maxshape中定义为None的那个维度:

X.resize(X.shape[0]+args.chunk_size,axis=0)

因为我们在maxshape=(None,args.patch_size,args.patch_size)中将第零个维度定义为可扩展,所以,首先我们用X.shape[0]来找到该维度的长度,并将其扩展。该维度扩展以后,就可以继续向里面写入数据了。

读数据集

读取h5文件的方法也非常简单,首先利用h5py.File方法打开对应的h5文件,然后将里面的某个数据集取出至变量,对这个变量的读取就如同numpy一样了。

h = h5py.File(hd5file,'r')
train = h['train']
train[1]
train[2]
...

但是上面的读取方法存在一个问题就是每一次使用的时候(train[1],train[2])都需要从硬盘读取数据,这将会导致读取的速度比较慢。一个比较好的方法是,每次从硬盘读取一个chunk_size的数据,然后将这些数据存储到内存中,在需要的时候从内存中读取,比如使用下面的方法:

h = h5py.File(hd5file,'r')
train = h['train']
X = train[0:100]         #一次从硬盘中读取比较多的数据,X将存储在内存中
X[1]                     #从内存中读取
X[2]                     #从内存中读取

这样的方法就会快很多。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容