猿学-中文词向量论文综述

导读

最近在做中文词向量相关工作,其中看了一些中文词向量的相关论文,在这篇文章,将把近几年的中文词向量进展及其模型结构加以简述,大概要写3-4篇综述,每篇包含2-3篇论文。

一、Enriching Word Vectors with Subword Information

论文来源

这是一篇2017年发表在ACL(Association for Computational Linguistics)会议上的论文,作者来自于Facebook AI Research --- Piotr Bojanowski ,Edouard Grave 。

Abstract

这篇论文虽然是针对英文等西方语言提出的想法,但是后面cw2vec将这个idea在中文词向量上进行了应用,在这里还是简单的介绍一下。

在英文中,每一个单词由若干个字母组成,单词的词义和其中的组成是有很大的关系的,这篇论文的核心思想就是采用单词的n-gram特征学习词向量的表示,并取得了很好的实验效果。

Model

这篇论文提出的方法也很简单,在每个word的前后分别添加< 与 >字符,作为这个单词的开始于结束,还有就是对于只有一个字母的word进行表示,然后抽取其n-gram词袋特征,具体来说,以3-gram为例,单词where,可以被表示成,单词a,可以表示为,这篇论文抽取的是3 至 6的n-gram,那么where的所有表示就是,3-ngram:,,5-gram:,6-gram:,以上就是where的所有表示,除此之外,还把原单词加入到n-gram中,最后word采用的是所有的n-gram的和。

这篇论文没有提供模型结构图,但是都是基于CBOW和skipgram进行的改善。

Experiment Result

这篇论文的实验部分,不仅仅在Human similarity judgement 和 Word analogy tasks两个任务上面做了比较,还包含了其他的对比实验,并且是在多种语言进行了实验,具体的实验结果如下图所示,其中sg代表skipram,sisg-代表的是对那些不在评测文件中出现的词采用不做处理,sisg代表的是不在评测文件中的词采用n-gram加和表示。

Human similarity judgement

Word analogy tasks

二、 cw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information

论文来源

这是一篇2018年发表在AAAI 2018(Association for the Advancement of Artificial Intelligence 2018)会议上的论文,作者来自于蚂蚁金服人工智能部 --- 曹绍升 。

详解

这篇我在前面已经对其理论进行了总结,并且实现了一个C++版本,具体的可以查看,cw2vec理论及其实现

三、Radical Enhanced Chinese Word Embedding

论文来源

这是一篇2018年发表在CCL2018(The Seventeenth China National Conference on Computational Linguistics, CCL 2018)会议上的论文,作者来自于电子科技大学 --- Zheng Chen 和 Keqi Hu 。

Abstract

这篇论文是我最近整理的时候看到的,也算是最新的中文词向量论文了,在这里也简单的看一下。

在这篇论文中,考虑了中文汉字内部丰富的语义信息,通过新的方法抽取特征,提出了新的学习中文词向量的方法,在Word Similarity 和 Word Analogy上面验证其效果。

Model

模型是基于CBOW来进行的改进,通过Radical(部首)来增强word embedding,称之为RECWE模型,具体的模型结构如下图所示,模型结构分为了两个部分:

左边的是word prediction module,是一个典型的CBOW模型结构,其中w_i代表的是目标词,w_i+1、w_i-1代表的是上下文词,h_i1代表是的上下文词的隐层表示。

右边是 sub-information prediction module,它与 word prediction module并行存在,其中的c、s、r与word prediction module 中的w相对应,分别是上下文词与目标词的character、component、radical,h_i2代表的是左右的特征隐层表示。在这部分,也存在CWE模型中一字多义,音译词等影响,他们考虑使用word来构建h_i2。

为了能够充分的挖掘内部语义信息,对radical进行了转换处理,如下图,

目标函数变化的不大,具体如下图,对 h_i1 和 h_i2 都采用了average处理。

Experiment Result

在 Word Similarity 和 Word Analogy 上验证了其实验效果。

为了验证sub-information特征的影响, 实验部分考虑了三种sub-information特征,分别为p1、p2、p3,其中p1代表的是仅仅使用上下文词的sub-information,p2代表的是仅仅使用目标词的sub-information,p3代表的是使用目标词和上下文词的sub-information。

Word Similarity采用的评测文件是wordsim-240,wordsim-296,具体的实验结果如下图。

Word Analogy采用的是Chen 2015年构造的评测文件,具体的实验结果如下图。

References

[1] Enriching Word Vectors with Subword Information

[2] cw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information

[3] Radical Enhanced Chinese Word Embedding

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容