数据结构——树和森林的遍历方法

树的遍历

1、树的遍历的定义:以某种方式访问树中的每一个结点,且仅访问一次。 树的遍历主要有先根遍历和后根遍历。
2、(1)先根遍历:若树非空,则先访问根结点,再按照从左到右的顺序遍历根结点的每一棵子树。这个访问顺序与这棵树对应的二叉树的先序遍历顺序相同。
(2)后根遍历:若树非空,则按照从左到右的顺序遍历根结点的每一棵子树,之后再访问根结点。其访问顺序与这棵树对应的二叉树的中序遍历顺序相同。
Example one:

1.jpg

根据以上这幅图有如下结果:

树的先根遍历:A-B-E-F-G-C-H-D-I-J 
对应的二叉树的先序遍历:A-B-E-F-G-C-H-D-I-J。由此可知二者是一致的。

树的后根遍历:E-F-G-B-H-C-I-J-D-A 
对应的二叉树的后序遍历:G-F-E-H-J-I-D-C-B-A 
对应的二叉树的中序遍历:E-F-G-B-H-C-I-J-D-A(与树的后根遍历相一致)

注意到我们并没有定义一般树的中根遍历,因为子结点该怎么分两部分并没有定义,所以只定义先、后根。
Example two:


2.png
⑴ 先序遍历:先访问根结点,然后依次先序遍历完每棵子树。如图的树,先序遍历的次序是: 
ABCDEFGIJHK 
⑵ 后序遍历:先依次后序遍历完每棵子树,然后访问根结点。如图的树,后序遍历的次序是: 
CDBFIJGHEKA

森林的遍历

1、前序遍历
前序遍历的定义为:
(1)访问森林中第一棵树的根结点;
(2)前序遍历第一棵树的根结点的子树;
(3)前序遍历去掉第一棵树后的子森林。

2、中序遍历
中序遍历的定义为:
(1)中序遍历第一棵树的根结点的子树;
(2)访问森林中第一棵树的根结点;
(3)中序遍历去掉第一棵树后的子森林。

3.png

由上图看看这个森林和二叉树的各种遍历如下:

森林的先根遍历:A-B-C-D-E-F-G-H-J-I 
二叉树森林的先序遍历:A-B-C-D-E-F-G-H-J-I(相同) 
完整二叉树的先序遍历:A-B-C-D-E-F-G-H-J-I (相同)

森林的后根遍历:B-C-D-A-F-E-J-H-I-G 
二叉树森林的后序遍历:D-C-B-A-F-E-J-I-H-G 
完整二叉树的后序遍历:D-C-B-F-J-I-H-G-E-A(不同于二叉树森林的后序遍历) 
二叉树森林的中序遍历:B-C-D-A-F-E-J-H-I-G(与森林的后根遍历相同) 
完整二叉树的中序遍历:B-C-D-A-F-E-J-H-I-G(与森林的后根遍历相同,自然也与二叉树森林的中序遍历相同) 
结论: 
◆ 根据森林与二叉树的转换关系以及森林和二叉树的遍历定义可以推知,森林的前序遍历和中序遍历与所转换的二叉树的先序遍历和中序遍历的结果序列相同。 
◆ 树的先序遍历实质上与将树转换成二叉树后对二叉树的先序遍历相同。 
◆ 树的后序遍历实质上与将树转换成二叉树后对二叉树的中序遍历相同。

森林与二叉树的转换

树转化为二叉树:
⑴ 加虚线(或者粗实线)。在树的每层按从“左至右”的顺序在兄弟结点之间加虚线相连。
⑵ 去连线。除最左的第一个子结点(长子节点)外,父结点与所有其它子结点的连线都去掉。

森林转换成二叉树:
当一般的树转换成二叉树后,二叉树的右子树必为空。若把森林中的第二棵树(转换成二叉树后)的根结点作为第一棵树(二叉树)的根结点的兄弟结点,则可导出森林转换成二叉树的转换步骤如下:
(1)、把每棵树转换为二叉树
(2)、按给出的森林中树的次序,第一棵树不动,从第二棵树开始,依次把后一棵树的根结点作为前一棵二叉树的根结点的右孩子,用线连起来,当所有的二叉树连接起来后,就得到了由森林转换来的二叉树。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容

  • 1.树(Tree): 树是 n(n>=0) 个结点的有限集。当 n=0 时称为空树。在任意一颗非空树中:有且仅有一...
    ql2012jz阅读 1,001评论 0 3
  • 数据结构和算法--二叉树的实现 几种二叉树 1、二叉树 和普通的树相比,二叉树有如下特点: 每个结点最多只有两棵子...
    sunhaiyu阅读 6,444评论 0 14
  • 第一章 绪论 什么是数据结构? 数据结构的定义:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 第二章...
    SeanCheney阅读 5,762评论 0 19
  • 概念 树是什么 树(Tree)是n(n>=0)个结点的有限集。 n = 0的树是空树。 在任意一棵非空树中: 有且...
    刚刚悟道阅读 5,036评论 1 16
  • 语言的奇妙 在过去的认识里,我们会觉得色彩鲜艳可以刺激幼儿的视力,但恰恰相反,婴儿第一次接触的图画书,最好是没有变...
    悠然小窝阅读 123评论 0 0