Kotlin(二十)异步流-操作符<2>

  1. 流上下文

流的收集总是在调用协程的上下文中发生。例如,如果有一个流 simple,然后以下代码在它的编写者指定的上下文中运行,而无论流 simple 的实现细节如何:

withContext(context) {
    simple().collect { value ->
        println(value) // 运行在指定上下文中
    }
}

流的该属性称为 上下文保存 。

所以默认的,flow { ... } 构建器中的代码运行在相应流的收集器提供的上下文中。举例来说,考虑打印线程的一个 simple 函数的实现, 它被调用并发射三个数字:

fun simple(): Flow<Int> = flow {
    log("Started simple flow")
    for (i in 1..3) {
        emit(i)
    }
}  

fun main() = runBlocking<Unit> {
    simple().collect { value -> log("Collected $value") } 
}            

[main @coroutine#1] Started simple flow
[main @coroutine#1] Collected 1
[main @coroutine#1] Collected 2
[main @coroutine#1] Collected 3

由于 simple().collect 是在主线程调用的,那么 simple 的流主体也是在主线程调用的。 这是快速运行或异步代码的理想默认形式,它不关心执行的上下文并且不会阻塞调用者。

  1. withContext 发出错误

然而,长时间运行的消耗 CPU 的代码也许需要在 Dispatchers.Default 上下文中执行,并且更新 UI 的代码也许需要在 Dispatchers.Main 中执行。通常,withContext 用于在 Kotlin 协程中改变代码的上下文,但是 flow {...} 构建器中的代码必须遵循上下文保存属性,并且不允许从其他上下文中发射(emit)。

报错代码

fun simple(): Flow<Int> = flow {
    // 在流构建器中更改消耗 CPU 代码的上下文的错误方式
    kotlinx.coroutines.withContext(Dispatchers.Default) {
        for (i in 1..3) {
            Thread.sleep(100) // 假装我们以消耗 CPU 的方式进行计算
            emit(i) // 发射下一个值
        }
    }
}

fun main() = runBlocking<Unit> {
    simple().collect { value -> println(value) } 
}  

error

Exception in thread "main" java.lang.IllegalStateException: Flow invariant is violated:
        Flow was collected in [CoroutineId(1), "coroutine#1":BlockingCoroutine{Active}@4a03ee16, BlockingEventLoop@c4f7368],
        but emission happened in [CoroutineId(1), "coroutine#1":DispatchedCoroutine{Active}@673ab05c, Dispatchers.Default].
        Please refer to 'flow' documentation or use 'flowOn' instead
 at kotlinx.coroutines.flow.internal.SafeCollector_commonKt.checkContext (SafeCollector.common.kt:84) 
 at kotlinx.coroutines.flow.internal.SafeCollector.checkContext (SafeCollector.kt:88) 
 at kotlinx.coroutines.flow.internal.SafeCollector.emit (SafeCollector.kt:74) 
  1. flowOn 操作符

例外的是 flowOn 函数,该函数用于更改流发射的上下文。 以下示例展示了更改流上下文的正确方法,该示例还通过打印相应线程的名字以展示它们的工作方式:

fun simple(): Flow<Int> = flow {
    for (i in 1..3) {
        Thread.sleep(100) // 假装我们以消耗 CPU 的方式进行计算
        log("Emitting $i")
        emit(i) // 发射下一个值
    }
}.flowOn(Dispatchers.Default) // 在流构建器中改变消耗 CPU 代码上下文的正确方式

fun main() = runBlocking<Unit> {
    simple().collect { value ->
        log("Collected $value") 
    } 
}            


[DefaultDispatcher-worker-1 @coroutine#2] Emitting 1
[main @coroutine#1] Collected 1
[DefaultDispatcher-worker-1 @coroutine#2] Emitting 2
[main @coroutine#1] Collected 2
[DefaultDispatcher-worker-1 @coroutine#2] Emitting 3
[main @coroutine#1] Collected 3

这里要观察的另一件事是 flowOn 操作符已改变流的默认顺序性。 现在收集发生在一个协程中(“coroutine#1”)而发射发生在运行于另一个线程中与收集协程并发运行的另一个协程(“coroutine#2”)中。当上游流必须改变其上下文中的 CoroutineDispatcher 的时候,flowOn 操作符创建了另一个协程。

  1. 缓冲

从收集流所花费的时间来看,将流的不同部分运行在不同的协程中将会很有帮助,特别是当涉及到长时间运行的异步操作时。例如,考虑一种情况, 一个 simple 流的发射很慢,它每花费 100 毫秒才产生一个元素;而收集器也非常慢, 需要花费 300 毫秒来处理元素。让我们看看从该流收集三个数字要花费多长时间:

fun simple(): Flow<Int> = flow {
    for (i in 1..3) {
        delay(100) // 假装我们异步等待了 100 毫秒
        emit(i) // 发射下一个值
    }
}

fun main() = runBlocking<Unit> { 
    val time = measureTimeMillis {
        simple().collect { value -> 
            delay(300) // 假装我们花费 300 毫秒来处理它
            println(value) 
        } 
    }   
    println("Collected in $time ms")
}

1
2
3
Collected in 1217 ms

它会产生这样的结果,整个收集过程大约需要 1200 毫秒(3 个数字,每个花费 400 毫秒):

我们可以在流上使用 buffer 操作符来并发运行这个 simple 流中发射元素的代码以及收集的代码, 而不是顺序运行它们:

val time = measureTimeMillis {
    simple()
        .buffer() // 缓冲发射项,无需等待
        .collect { value -> 
            delay(300) // 假装我们花费 300 毫秒来处理它
            println(value) 
        } 
}   
println("Collected in $time ms")

1
2
3
Collected in 1047 ms

它产生了相同的数字,只是更快了,由于我们高效地创建了处理流水线, 仅仅需要等待第一个数字产生的 100 毫秒以及处理每个数字各需花费的 300 毫秒。这种方式大约花费了 1000 毫秒来运行:

注意,当必须更改 时,[flowOn]操作符使用了相同的缓冲机制, 但是我们在这里显式地请求缓冲而不改变执行上下文。

  1. 合并

当流代表部分操作结果或操作状态更新时,可能没有必要处理每个值,而是只处理最新的那个。在本示例中,当收集器处理它们太慢的时候, conflate 操作符可以用于跳过中间值。构建前面的示例:

val time = measureTimeMillis {
    simple()
        .conflate() // 合并发射项,不对每个值进行处理
        .collect { value -> 
            delay(300) // 假装我们花费 300 毫秒来处理它
            println(value) 
        } 
}   
println("Collected in $time ms")

1
3
Collected in 746 ms

我们看到,虽然第一个数字仍在处理中,但第二个和第三个数字已经产生,因此第二个是 conflated ,只有最新的(第三个)被交付给收集器

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容