Re-Architecting the Video Gatekeeper(二)

原文: https://medium.com/netflix-techblog/re-architecting-the-video-gatekeeper-f7b0ac2f6b00

想法

我们决定部署一个全高密度近场缓存(Hollow)来解决我们的IO瓶颈。对于我们的每个上游系统,我们要建一个能让Gatekeeper执行这次评估的包括所有数据的Hollow数据集。每个上游系统现在都需要保证它的缓存保持最新。

使用这个模型,活跃性评估将数据从上游系统中隔离出来了。相对于对事件进行响应,Gatekeeper会以一个重复的周期从遍布全世界的视频数据中持续的处理活跃性数据。迭代周期从Netflix的每个视频上线开始,计算它们的活跃性信息。在每个周期的结束,它产出一个经过计算的表示全世界所有视频的活跃性明细信息的输出(包括Hollow数据集)。

我们希望这个持续处理模型是可行的,这样我们可以彻底移除我们IO上的瓶颈,可以保证操作顺序更有效。我们也期望通过迁移到这个模型,我们可以对业务产生更正面的影响。

  • 作为对Gatekeeper对上游系统产生的过大的负载的最终解决方案
  • 彻底消除活跃性处理的延迟和错过上线日期的问题。
  • 缓解内容配置工程团队在性能相关问题的时间消耗。
  • 改进活跃性处理的可调试性和可见性

问题

Hollow可以被想象为一个时间机器。作为一个数据一直在变化的数据集,通过将变更分成一系列的时间线的数据状态并将变更发送给消费方。每份数据状态都表示为整个数据集在当时时刻的一份快照。

通常,Hollow数据集的消费者将加载的最新的数据状态并将产生的新状态保存到他们的混存中。当然,它们可能会将状态替换到之前的样子 - 导致将整个数据集指向之前的一个状态。

传统产生数据状态的方式是维护一个运行重复周期的生产者。在一个周期中,生产者从元数据中迭代所有记录。在迭代中,它对Hollow库中增加每条数据。Hollow则在之后计算数据的变化并在最后的周期将数据填加上去,将数据状态发布到一个已知地址的消费者。

这个基于真实数据源的迭代模型的问题是它可能会需要很长时间。在这个场景中一些我们的上游系统,这需要几小时。数据传播延迟是不可接受的 - 我们不能为活跃性处理等待几个小时,比如,标题运营给电影增加了一个评级并需要立即发布上线。

改进

我们需要一个更快的时间机器 - 它可以更频繁的产出状态,让消费方可以更快的识别到变化。

为了达到这个目标,我们建立了一套很强的Hollow基础设施,平衡了之前Hollow library做的工作,与流处理团队在Target生产环境做的先锋性工作(现在是公开的非beta的API)

使用这套基础设施,每次变更都可以在源应用中呗检测到,更新过的记录会被编码并发送给Kafka topic。一个不属于源应用的新组件,Hollow增量生产服务,以一个预定义的节奏执行一个重复周期。 在每个周期,它读取自从上个周期所有增加到topic的消息,并让Hollow状态引擎反映出更新过的记录的最新状态。

如果一个Kafka topic中的消息包含了已经在Hollow数据集中已经反映出来的相同数据,不会有任何变动。

为了缓解丢失事件产生的影响,我们实现了一套周期性从整个数据集清扫的机制。当它执行时,它将每条记录的内容发送给Kafka topic。通过这种方式,任何可能丢失的更新都会反映到Hollow数据集上。并且,这不是更新传播到Hollow数据集上的主要方式,它不需要像传统Hollow使用方式那样很快很频繁的在源上迭代运行。

Hollow增量生产者有从Kafka topic中读取大量消息并快速转变成Hollow状态的能力 - 所以我们可以将这个周期配置的非常短(我们目前的缺省配置是30秒)。

这就是我们如何构建一个更快时间机器的方式。现在,如果标题运营给电影增加了一条评级,在30秒内,数据就可以在Hollow数据集上可用。

本文来自微信公众号「麦芽面包,id「darkjune_think」
转载请注明。微信扫一扫关注公众号。
交流Email: zhukunrong@yeah.net

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容