理解原型对象
无论什么时候,只要创建了一个新函数,就会根据一组特定的规则为该函数创建一个prototype属性,这个属性指向函数的原型对象。在默认情况下,所有原型对象都会自动获得一个constructor(构造函数)属性,这个属性包含一个指向prototype 属性所在函数的指针。
function Person() {}
Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";
Person.prototype.sayName = function() {
alert(this.name);
};
var person1 = new Person();
就拿前面的例子来说,Person.prototype. constructor 指向Person。而通过这个构造函数,我们还可继续为原型对象添加其他属性和方法。
更简单的原型语法
前面例子中每添加一个属性和方法就要敲一遍Person.prototype。为减少不必要的输入,也为了从视觉上更好地封装原型的功能,更常见的做法是用一个包含所有属性和方法的对象字面量来重写整个原型对象,如下面的例子所示。
function Person() {}
Person.prototype = {
name: "Nicholas",
age: 29,
job: "Software Engineer",
sayName: function() {
alert(this.name);
}
};
在上面的代码中,我们将Person.prototype 设置为等于一个以对象字面量形式创建的新对象。
最终结果相同,但有一个例外:constructor 属性不再指向Person 了。前面曾经介绍过,每创建一个函数,就会同时创建它的prototype 对象,这个对象也会自动获得constructor 属性。而我们在这里使用的语法,本质上完全重写了默认的prototype 对象,因此constructor 属性也就变成了新对象的constructor 属性(指向Object 构造函数),不再指向Person 函数。此时,尽管instanceof操作符还能返回正确的结果,但通过constructor 已经无法确定对象的类型了,如下所示。
var friend = new Person();
alert(friend instanceof Object); //true
alert(friend instanceof Person); //true
alert(friend.constructor == Person); //false
alert(friend.constructor == Object); //true
在此,用instanceof 操作符测试Object 和Person 仍然返回true,但constructor 属性则等于Object 而不等于Person 了。如果constructor 的值真的很重要,可以像下面这样特意将它设置回适当的值。
function Person() {}
Person.prototype = {
constructor: Person,
name: "Nicholas",
age: 29,
job: "Software Engineer",
sayName: function() {
alert(this.name);
}
};
以上代码特意包含了一个constructor 属性,并将它的值设置为Person,从而确保了通过该属性能够访问到适当的值。
注意:
以这种方式重设constructor 属性会导致它的[[Enumerable]]特性被设置为true。默认情况下,原生的constructor 属性是不可枚举的(枚举:就是遍历对象的时候,此属性可以和普通属性一样,被直接获取。),因此如果你使用兼容ECMAScript 5 的JavaScript 引擎,可以试一试Object.defineProperty()。
function Person() {}
Person.prototype = {
name: "Nicholas",
age: 29,
job: "Software Engineer",
sayName: function() {
alert(this.name);
}
};
//重设构造函数,只适用于ECMAScript 5 兼容的浏览器
Object.defineProperty(Person.prototype, "constructor", {
enumerable: false,
value: Person
});
原型的动态性
由于在原型中查找值的过程是一次搜索,因此我们对原型对象所做的任何修改都能够立即从实例上反映出来——即使是先创建了实例后修改原型也照样如此。请看下面的例子。
var friend = new Person();
Person.prototype.sayHi = function(){
alert("hi");
};
friend.sayHi(); //"hi"(没有问题!)
以上代码先创建了Person 的一个实例,并将其保存在person 中。然后,下一条语句在Person.prototype 中添加了一个方法sayHi()。即使person 实例是在添加新方法之前创建的,但它仍然可以访问这个新方法。其原因可以归结为实例与原型之间的松散连接关系。当我们调用person.sayHi()时,首先会在实例中搜索名为sayHi 的属性,在没找到的情况下,会继续搜索原型。因为实例与原型之间的连接只不过是一个指针,而非一个副本,因此就可以在原型中找到新的sayHi 属性并返回保存在那里的函数。
尽管可以随时为原型添加属性和方法,并且修改能够立即在所有对象实例中反映出来,但如果是重写整个原型对象,那么情况就不一样了。我们知道,调用构造函数时会为实例添加一个指向最初原型的[[Prototype]]指针,而把原型修改为另外一个对象就等于切断了构造函数与最初原型之间的联系。请记住:实例中的指针仅指向原型,而不指向构造函数。看下面的例子。
function Person() {}
var friend = new Person();
Person.prototype = {
constructor: Person,
name: "Nicholas",
age: 29,
job: "Software Engineer",
sayName: function() {
alert(this.name);
}
};
friend.sayName(); //error
在这个例子中,我们先创建了Person 的一个实例,然后又重写了其原型对象。然后在调用friend.sayName()时发生了错误,因为friend 指向的原型中不包含以该名字命名的属性。
原型对象的问题
原型模式也不是没有缺点。首先,它省略了为构造函数传递初始化参数这一环节,结果所有实例在默认情况下都将取得相同的属性值。虽然这会在某种程度上带来一些不方便,但还不是原型的最大问题。
原型模式的最大问题是由其共享的本性所导致的。
原型中所有属性是被很多实例共享的,这种共享对于函数非常合适。对于那些包含基本值的属性倒也说得过去,毕竟(如前面的例子所示),通过在实例上添加一个同名属性,可以隐藏原型中的对应属性。然而,对于包含引用类型值的属性来说,问题就比较突出了。来看下面的例子。
function Person() {}
Person.prototype = {
constructor: Person,
name: "Nicholas",
age: 29,
job: "Software Engineer",
friends: ["Shelby", "Court"],
sayName: function() {
alert(this.name);
}
};
var person1 = new Person();
var person2 = new Person();
person1.friends.push("Van");
alert(person1.friends); //"Shelby,Court,Van"
alert(person2.friends); //"Shelby,Court,Van"
alert(person1.friends === person2.friends); //true
在此,Person.prototype 对象有一个名为friends 的属性,该属性包含一个字符串数组。然后,创建了Person 的两个实例。接着,修改了person1.friends 引用的数组,向数组中添加了一个字符串。由于friends 数组存在于Person.prototype 而非person1 中,所以刚刚提到的修改也会通过person2.friends(与person1.friends 指向同一个数组)反映出来。假如我们的初衷就是像这样在所有实例中共享一个数组,那么对这个结果我没有话可说。可是,实例一般都是要有属于自己的全部属性的。而这个问题正是我们很少看到有人单独使用原型模式的原因所在。
组合使用构造函数模式和原型模式
创建自定义类型的最常见方式,就是组合使用构造函数模式与原型模式。构造函数模式用于定义实例属性,而原型模式用于定义方法和共享的属性。结果,每个实例都会有自己的一份实例属性的副本,但同时又共享着对方法的引用,最大限度地节省了内存。另外,这种混成模式还支持向构造函数传递参数;可谓是集两种模式之长。下面的代码重写了前面的例子。
function Person(name, age, job) {
this.name = name;
this.age = age;
this.job = job;
this.friends = ["Shelby", "Court"];
}
Person.prototype = {
constructor: Person,
sayName: function() {
alert(this.name);
}
}
var person1 = new Person("Nicholas", 29, "Software Engineer");
var person2 = new Person("Greg", 27, "Doctor");
person1.friends.push("Van");
alert(person1.friends); //"Shelby,Count,Van"
alert(person2.friends); //"Shelby,Count"
alert(person1.friends === person2.friends); //false
alert(person1.sayName === person2.sayName); //true
在这个例子中,实例属性都是在构造函数中定义的,而由所有实例共享的属性constructor 和方法sayName()则是在原型中定义的。而修改了person1.friends(向其中添加一个新字符串),并不会影响到person2.friends,因为它们分别引用了不同的数组。
这种构造函数与原型混成的模式,是目前在ECMAScript 中使用最广泛、认同度最高的一种创建自定义类型的方法。可以说,这是用来定义引用类型的一种默认模式。
动态原型模式
有其他OO 语言经验的开发人员在看到独立的构造函数和原型时,很可能会感到非常困惑。动态原型模式正是致力于解决这个问题的一个方案,它把所有信息都封装在了构造函数中,而通过在构造函数中初始化原型(仅在必要的情况下),又保持了同时使用构造函数和原型的优点。换句话说,可以通过检查某个应该存在的方法是否有效,来决定是否需要初始化原型。来看一个例子。
function Person(name, age, job) {
//属性
this.name = name;
this.age = age;
this.job = job;
//方法
if (typeof this.sayName != "function") {
Person.prototype.sayName = function() {
alert(this.name);
};
}
}
var friend = new Person("Nicholas", 29, "Software Engineer");
friend.sayName();
注意构造函数代码中加粗的部分。这里只在sayName()方法不存在的情况下,才会将它添加到原型中。这段代码只会在初次调用构造函数时才会执行。此后,原型已经完成初始化,不需要再做什么修改了。不过要记住,这里对原型所做的修改,能够立即在所有实例中得到反映。因此,这种方法确实可以说非常完美。其中,if 语句检查的可以是初始化之后应该存在的任何属性或方法——不必用一大堆if 语句检查每个属性和每个方法;只要检查其中一个即可。对于采用这种模式创建的对象,还可以使用instanceof 操作符确定它的类型。
使用动态原型模式时,不能使用对象字面量重写原型。前面已经解释过了,如果在已经创建了实例的情况下重写原型,那么就会切断现有实例与新原型之间的联系
寄生构造函数模式
通常,在前述的几种模式都不适用的情况下,可以使用寄生(parasitic)构造函数模式。这种模式的基本思想是创建一个函数,该函数的作用仅仅是封装创建对象的代码,然后再返回新创建的对象;但从表面上看,这个函数又很像是典型的构造函数。下面是一个例子。
function Person(name, age, job) {
var o = new Object();
o.name = name;
o.age = age;
o.job = job;
o.sayName = function() {
alert(this.name);
};
return o;
}
var friend = new Person("Nicholas", 29, "Software Engineer");
friend.sayName(); //"Nicholas"
在这个例子中,Person 函数创建了一个新对象,并以相应的属性和方法初始化该对象,然后又返回了这个对象。除了使用new 操作符并把使用的包装函数叫做构造函数之外,这个模式跟工厂模式其实是一模一样的。构造函数在不返回值的情况下,默认会返回新对象实例。而通过在构造函数的末尾添加一个return 语句,可以重写调用构造函数时返回的值。
这个模式可以在特殊的情况下用来为对象创建构造函数。假设我们想创建一个具有额外方法的特殊数组。由于不能直接修改Array 构造函数,因此可以使用这个模式。
function SpecialArray() {
//创建数组
var values = new Array();
//添加值
values.push.apply(values, arguments);
//添加方法
values.toPipedString = function() {
return this.join("|");
};
//返回数组
return values;
}
var colors = new SpecialArray("red", "blue", "green");
alert(colors.toPipedString()); //"red|blue|green"
在这个例子中,我们创建了一个名叫SpecialArray 的构造函数。在这个函数内部,首先创建了一个数组,然后push()方法(用构造函数接收到的所有参数)初始化了数组的值。随后,又给数组实例添加了一个toPipedString()方法,该方法返回以竖线分割的数组值。最后,将数组以函数值的形式返回。接着,我们调用了SpecialArray 构造函数,向其中传入了用于初始化数组的值,此后又调用了toPipedString()方法。
关于寄生构造函数模式,有一点需要说明:首先,返回的对象与构造函数或者与构造函数的原型属性之间没有关系;也就是说,构造函数返回的对象与在构造函数外部创建的对象没有什么不同。为此,不能依赖instanceof 操作符来确定对象类型。由于存在上述问题,我们建议在可以使用其他模式的情况下,不要使用这种模式。
稳妥构造函数模式
道格拉斯·克罗克福德(Douglas Crockford)发明了JavaScript 中的稳妥对象(durable objects)这个概念。所谓稳妥对象,指的是没有公共属性,而且其方法也不引用this 的对象。稳妥对象最适合在一些安全的环境中(这些环境中会禁止使用this 和new),或者在防止数据被其他应用程序(如Mashup程序)改动时使用。稳妥构造函数遵循与寄生构造函数类似的模式,但有两点不同:一是新创建对象的实例方法不引用this;二是不使用new 操作符调用构造函数。按照稳妥构造函数的要求,可以将前面的Person 构造函数重写如下。
function Person(name, age, job) {
//创建要返回的对象
var o = new Object();
//可以在这里定义私有变量和函数
//添加方法
o.sayName = function() {
alert(name);
};
//返回对象
return o;
}
注意:
在以这种模式创建的对象中,除了使用sayName()方法之外,没有其他办法访问name 的值。
可以像下面使用稳妥的Person 构造函数。
var friend = Person("Nicholas", 29, "Software Engineer");
friend.sayName(); //"Nicholas"
这样,变量friend 中保存的是一个稳妥对象,而除了调用sayName()方法外,没有别的方式可以访问其数据成员。即使有其他代码会给这个对象添加方法或数据成员,但也不可能有别的办法访问传入到构造函数中的原始数据。稳妥构造函数模式提供的这种安全性,使得它非常适合在某些安全执行环境——例如,ADsafe(www.adsafe.org)和Caja(http://code.google.com/p/google-caja/)提供的环境——下使用。
与寄生构造函数模式类似,使用稳妥构造函数模式创建的对象与构造函数之间也没有什么关系,因此instanceof 操作符对这种对象也没有意义。