算法时间复杂度

一、常见算法复杂度

O(N!)、O(2N)、O(N2)、O(NlogN)、O(N)、O(logN)、O(1)...
代表: 最坏情况的用时

二、数学概念科普

1、N! 阶乘

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。

  • 0!=1
  • 5!=1×2×3×4×5
  • n!=1×2×3×4×....×(n-1)×n

2、2^N / N^2

N 的 N 次方,^ 是上标的意思

  • 2^N:2 的 N 次方
  • N^2:N 的 2 次方

3、logN 对数函数

如果 aˣ = N(a>0,且a≠1),那么数 x 叫做以 a 为底 N 的对数,记作 x=logaN,读作以 a 为底 N 的对数,其中 a 叫做对数的底数,N 叫做真数。
其中 x 是自变量,函数的定义域是(0,+∞),即 x>0。它实际上就是指数函数的反函数,可表示为 x= aʸ 。因此指数函数里对于 a 的规定,同样适用于对数函数。

  • logN:以 2 为底 N 的对数,eg x=logN => 2^X=N => 如果N=256,则X=8,即logN=8

三、时间复杂度

描述算法复杂度时,常用o(1), o(n), o(logn), o(nlogn)表示对应算法的时间复杂度,是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。

1、O(N)

时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍,线性增长,比如常见的:

  • 遍历算法

2、O(N^2)

时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如:

  • 冒泡排序 ,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
  • 插入排序
  • 选择排序
for(int i=0; i<n; i++) { 
  for(int j=i; j<n; j++) { 
    .... 
  } 
} 

3、O(nlogn)

O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。比如:

  • 归并排序 就是O(nlogn)的时间复杂度。
  • 快速排序(平均)


    O(NlogN).png

4、O(logn)

当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。比如:

  • 二分查找 就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。(在二分查找算法中前提是假设数据有序)


    O(logN).png

5、O(1)

O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 比如:

  • 哈希算法 就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)

四、具体耗时

代入 N 以后的数值,和耗时的关系,10 ^ 8 => 秒级,最大的 N 分别是:

  • O(N!) => 10
  • O(2^N) => 30
  • O(N^2) => 10000
  • O(NlogN) => 10^7
  • O(NlogN)/O(N) => 10^8
  • O(logN) => 天文数字
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356