SSD源码测试

下载源码:

github地址

  • 解压:

这里的代码比较全:

  1. datasets是数据工厂
  2. notebooks是测试文件
  1. checkpoints是cpkt文件,解压到当前目录。
  2. demo和pictures均是图片
  3. net是网络结构文件
  4. deployment是训练用的部署文件

开始玩玩这个代码

其他暂时未追究,分三步。
1.测试
2.验证
3.训练

测试

在notebook中有ssd_tests.ipynb文件
在SSD-Tensorflow-master根目录,在cmd中输入,shitf + 鼠标右键

jupyter  notebook

会在浏览器打开jupyter notebook

直接运行所有的cell,记得解压checkpoints的文件。

验证

先做数据,先还是下载VOC 2007数据
这里有数据地址:
链接:https://pan.baidu.com/s/15Tster6-DhDc1J5rhguHoA
提取码:1j36

  • 先生成tfrecord
    修改datasets/pascalvoc_to_tfrecords.py 代码,如下,

在根目录下运行tf_convert_data.py
公认的操作如下,linux下建立.sh文件:

DATASET_DIR=./VOC2007/test/
OUTPUT_DIR=./tfrecords
python tf_convert_data.py \
    --dataset_name=pascalvoc \
    --dataset_dir=${DATASET_DIR} \
    --output_name=voc_2007_train \
    --output_dir=${OUTPUT_DIR}

我是如下操作,没在cmd输入参数,修改了tf_convert_data.py的参数默认值。

tf.app.flags.DEFINE_string(
    'dataset_name', 'pascalvoc',
    'The name of the dataset to convert.')
tf.app.flags.DEFINE_string(
    'dataset_dir', 'F:/my_code/object_detector/VOCdevkit/VOC2007/',
    'Directory where the original dataset is stored.')
tf.app.flags.DEFINE_string(
    'output_name', 'voc_2007_test',
    'Basename used for TFRecords output files.')
tf.app.flags.DEFINE_string(
    'output_dir', './datasets/',
    'Output directory where to store TFRecords files.')

注意这里的

tf.app.flags.DEFINE_string(
    'output_name', 'voc_2007_test',
    'Basename used for TFRecords output files.')

最好以voc_2007_*_ 这样的格式,其他格式会报错,因为在pascalvoc_2007.py中如下。

制作train数据 和 test数据:

voc_2007_train 和 voc_2007_test

结果:

  • 得到tfcord文件:
  • 开始测试模型的精度

报错:


点这里解决
在eval_ssd_network.py加一个函数flatten()

def flatten(x): 
    result = [] 
    for el in x: 
        if isinstance(el, tuple): 
            result.extend(flatten(el))
        else: 
            result.append(el) 
    return result

如下:

再修改:

eval_op=flatten(list(names_to_updates.values())),

输入:

python .\eval_ssd_network.py

搞定得到日志文件:

运行tensorboard:

训练

  1. 生成数据
  2. 也是建立.sh文件。
#!/bin/bash

#The directory where the dataset files are stored.
DATASET_DIR=/home/doctorimage/kindlehe/common/dataset/VOC2007/VOCtrainval_06-Nov-2007/VOCdevkit/VOC2007_tfrecord/
#../../../../common/dataset/VOC2007/VOCtrainval_06-Nov-2007/VOCdevkit/VOC2007_tfrecord/

#Directory where checkpoints and event logs are written to.
TRAIN_DIR=.././log_files/log_finetune/

#The path to a checkpoint from which to fine-tune
CHECKPOINT_PATH=/home/doctorimage/kindlehe/common/models/tfmodlels/SSD/VGG_VOC0712_SSD_300x300_ft_iter_120000/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt
#../../../../common/models/tfmodlels/SSD/VGG_VOC0712_SSD_300x300_ft_iter_120000/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt



python3 ../train_ssd_network.py \
    --train_dir=${TRAIN_DIR} \
    --dataset_dir=${DATASET_DIR} \
    --dataset_name=pascalvoc_2007 \
    --dataset_split_name=train \
    --model_name=ssd_300_vgg \
    --checkpoint_path=${CHECKPOINT_PATH} \
    --save_summaries_secs=60 \
    --save_interval_secs=600 \
    --weight_decay=0.0005 \
    --optimizer=adam \
    --learning_rate=0.001 \
    --batch_size=32

我是win10玩家:

python ./train_ssd_network.py  --train_dir=./train_model/  --dataset_dir=./tfrecords_/  --dataset_name=pascalvoc_2007 --dataset_split_name=train --model_name=ssd_300_vgg   --checkpoint_path=./checkpoints/vgg16.ckpt   --checkpoint_model_scope=vgg_16 --checkpoint_exclude_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box   --trainable_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box --save_summaries_secs=60   --save_interval_secs=600 --weight_decay=0.0005   --optimizer=adam   --learning_rate=0.001 --learning_rate_decay_factor=0.94   --batch_size=24      --gpu_memory_fraction=0.9    

注意:

  • –dataset_name=pascalvoc_2007
  • –dataset_split_name=train
  • –model_name=ssd_300_vgg这三个参数不要自己随便取,在代码里,这三个参数是if…else…语句,有固定的判断值,所以要根据实际情况取选择
  • tf.contrib.slim.learning.training函数中max-step为None时训练会无限进行

参考:
Kindle君
SSD-tensorflow 测试与训练实践

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,052评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,267评论 3 397
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,518评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,457评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,474评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,143评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,728评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,650评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,184评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,269评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,415评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,083评论 5 348
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,775评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,257评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,389评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,777评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,419评论 2 359