2020 华为杯研究生数学建模竞赛- 题目与思路分析

  • 本篇文章为本人原创内容,如需转载引用,请务必在文中附上原链接及相应说明,包括作者信息(阿瑟)
  • 本篇文章非完整分析思路,仅供参考,欢迎学习交流
  • 码字不易,好心人随手点个赞

A题 载波恢复DSP算法设计与实现

给了很长的背景介绍,需要对整个算法基础知识有清楚的认识。
看起来通信相关专业的同学上手应该更快,感觉上是一个标准的工业算法分析改进的问题。

B题 辛烷值损失模型

可能是所有题中最简单的问题了,

依据从催化裂化汽油精制装置采集的325个数据样本(每个数据样本都有354个操作变量),通过数据挖掘技术来建立汽油辛烷值(RON)损失的预测模型,并给出每个样本的优化操作条件,在保证汽油产品脱硫效果(欧六和国六标准均为不大于10μg/g,但为了给企业装置操作留有空间,本次建模要求产品硫含量不大于5μg/g)的前提下,尽量降低汽油辛烷值损失在30%以上。

问题一: 数据预处理
问题二:寻找建模主要变量:根据提供的325个样本数据(见附件一),通过降维的方法从367个操作变量中筛选出建模主要变量,使之尽可能具有代表性、独立性(为了工程应用方便,建议降维后的主要变量在30个以下),并请详细说明建模主要变量的筛选过程及其合理性. (特征筛选,传统的PCA已经最近几年机器学习中提出的特征工程方法都可以使用)

其他问题略过,感觉是个比较常规的数模题,校赛中就有类似题目。

C题 脑电信号分析与判别模型

给了P300脑电数据和睡眠脑电数据,如题目所言就是信号分析和分类的任务,可以查阅类脑认知科学中的相关论文,这方面的信号处理和脑电分类的模型或者算法是很多的。

问题一: 设计或采用一个方法,在尽可能使用较少轮次(要求轮次数小于等于5)的测试数据的情况下,找出附件1中5个被试测试集中的10个待识别目标,并给出具体的分类识别过程,可与几种方法进行对比,来说明设计方法的合理性。 (构建基础的信号特征和分类模型,关键点在于对特征重要性进行分析,选择重要的特征,从而改变模型所需数据,减少采集数据量)

问题二:请分析附件1所给数据,并设计一个通道选择算法,给出针对每个被试的、更有利于分类的通道名称组合(要求通道组合的数量小于20大于等于10,每个被试所选的通道可以不相同,具体的通道名称见图5和表1)。基于通道选择的结果,进一步分析对于所有被试都较适用的一组最优通道名称组合,并给出具体分析过程。(跟问题一相似,是对数据信号的分析;可以首先对单通道信号进行分析测试,看相应效果;然后根据单通道分类效果制定组合策略

问题三、四:略:本质就是构建合适的机器学习/NN模型,可能涉及到一点数据增益/集成等知识,需要查阅脑电科学中的相关工作。

D.无人机集群协同对抗

近几年几乎每年都有,也是学术和军工界关注的重点。一直没有了解过,直接跳过....

E. 能见度估计

与去年的景深估计问题有点相似。对于研究CV的同学难度不算大。

问题一:建立模型描述能见度与地面气象观测(温度、湿度和风速等)之间的关系,并针对题目所提供的数据导出具体的关系式; (这个可以传统的线性/非线性模型做一个简单的回归,得到一个简单的关系式)

问题二:根据题目提供的某机场视频数据 和能见度数据,建立基于视频数据的能见度估计深度学习模型,并对估计的能见度进行精度评估;(明显的CV任务了,需要根据视频和能见度设计优化目标和预测目标,可以对能见度做一些转换;然后就是一个模型精度的评估问题;有点吃机器呢,没卡怕是难搞)

问题三:高速公路某路段只有监控视频数据,建立不依赖能见度仪观测数据的能见度估计算法。(相当于是个无监督任务,要用上景深估计等CV里面的基础任务了)

END

本人简书所有文章均为原创,欢迎转载,请注明文章出处 。百度和CSDN等站皆不可信,搜索请谨慎鉴别。技术类文章一般都有时效性,本人习惯不定期对自己的笔记/博文进行更新,因此请访问本人简书主页查看最新信息https://www.jianshu.com/u/40d14973d97c

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351