4-1 Leaming is Impossible&4-2 Probability to the Rescue|机器学习基石(林轩田)-学习笔记

文章原创,最近更新:2018-07-24

学习链接:
4-1 Leaming is Impossible
4-2 Probability to the Rescue

学习参考链接:
1、台湾大学林轩田机器学习基石课程学习笔记4 -- Feasibility of Learning

1.Leaming is Impossible

上节课,我们主要介绍了根据不同的设定,机器学习可以分为不同的类型。其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题。本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决。

首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格。根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1;如果依据九宫格左上角是否是黑色,我们会把它归为-1。除此之外,还有根据其它不同特征进行分类,得到不同结果的情况。而且,这些分类结果貌似都是正确合理的,因为对于6个训练样本来说,我们选择的模型都有很好的分类效果。

再来看一个比较数学化的二分类例子,输入特征x是二进制的、三维的,对应有8种输入,其中训练样本D有5个。那么,根据训练样本对应的输出y,假设有8个hypothesis,这8个hypothesis在D上,对5个训练样本的分类效果效果都完全正确。但是在另外3个测试数据上,不同的hypothesis表现有好有坏。在已知数据D上,g≈f;但是在D以外的未知数据上,g≈f不一定成立。而机器学习目的,恰恰是希望我们选择的模型能在未知数据上的预测与真实结果是一致的,而不是在已知的数据集D上寻求最佳效果。


这个例子告诉我们,我们想要在D以外的数据中更接近目标函数似乎是做不到的,只能保证对D有很好的分类结果。机器学习的这种特性被称为没有免费午餐(No Free Lunch)定理。NFL定理表明没有一个学习算法可以在任何领域总是产生最准确的学习器。不管采用何种学习算法,至少存在一个目标函数,能够使得随机猜测算法是更好的算法。平常所说的一个学习算法比另一个算法更“优越”,效果更好,只是针对特定的问题,特定的先验信息,数据的分布,训练样本的数目,代价或奖励函数等。从这个例子来看,NFL说明了无法保证一个机器学习算法在D以外的数据集上一定能分类或预测正确,除非加上一些假设条件,我们以后会介绍。

测试练习:


答案是4


2.Probability to the Rescue

从上一节得出的结论是:在训练集D以外的样本上,机器学习的模型是很难,似乎做不到正确预测或分类的。那是否有一些工具或者方法能够对未知的目标函数f做一些推论,让我们的机器学习模型能够变得有用呢?

如果有一个装有很多(数量很大数不过来)橙色球和绿色球的罐子,我们能不能推断橙色球的比例u?统计学上的做法是,从罐子中随机取出N个球,作为样本,计算这N个球中橙色球的比例v,那么就估计出罐子中橙色球的比例约为v。


这种随机抽取的做法能否说明罐子里橙色球的比例一定是v呢?答案是否定的。但是从概率的角度来说,样本中的v很有可能接近我们未知的u。下面从数学推导的角度来看v与u是否相近。

已知u是罐子里橙色球的比例,v是N个抽取的样本中橙色球的比例。当N足够大的时候,v接近于u。这就是Hoeffding’s inequality:

关于霍夫丁不等式:
1)对任意N和ε都成立;
2)不需要知道 μ;
3)当N larger、looser gap ε(较大的容忍度),那么 v ≈ μ的概率会higher;
因此,如果sample够大的话,我们可以通过v infer μ(概率论知识)。

Hoeffding不等式说明当N很大的时候,v与u相差不会很大,它们之间的差值被限定在ϵ之内。我们把结论v=u称为probably approximately correct(PAC)。

测试练习:


答案是3,这是机率的上限.


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容