转录组分析:RNA-seq pipeline through kallisto or salmon

RNA-seq pipeline through kallisto or salmon

kallisto 和salmon相比含有hisat2和STAR等软的RNA-seq流程而言,速度更快,这是因为该软件基于转录组序列reference(也即是cDNA序列)并且基于k mer比对原理。通常如果想研究RNA-seq过程基因发生了何种变化且不需知道新转录本,可以直接使用kallisto或salmon获取转录本的丰度信息。

install software

conda install -c bioconda kallisto salmon -y

过滤原始 fastq files

任何RNA-seq流程都需要对原始fastq reads文件进行质控,质控包括去除接头、barcode等额外引入的序列,当然也包括舍弃低质量的reads。这类软件有,cutadapt、flexbar和trimmomatic等。

download reference

转录本序列可以从多个网站下载,这里我们下载ENSEMBL数据库的小鼠cDNA数据。

wget ftp://ftp.ensembl.org/pub/release-100/fasta/mus_musculus/cdna/Mus_musculus.GRCm38.cdna.all.fa

build index

kallisto index -i kallisto_index/Mus_musculus.GRCm38 Mus_musculus.GRCm38.cdna.all.fa
salmon index -i salmon_index/Mus_musculus.GRCm38 -t Mus_musculus.GRCm38.cdna.all.fa -p 20

生成批量运行的脚本

准备文件:samples.path.tsv(原始数据文件)

SampleID LaneID Path
HF_NC01 HF_NC01_RNA_b2.r2 /01.rename/HF_NC01_RNA_b2.r2.fq.gz
HF_NC01 HF_NC01_RNA_b2.r1 /01.rename/HF_NC01_RNA_b2.r1.fq.gz
HF_NC02 HF_NC02_RNA_b2.r1 /01.rename/HF_NC02_RNA_b2.r1.fq.gz
HF_NC02 HF_NC02_RNA_b2.r2 /01.rename/HF_NC02_RNA_b2.r2.fq.gz
HF_NC03 HF_NC03_RNA_novo.r2 /01.rename/HF_NC03_RNA_novo.r2.fq.gz
HF_NC03 HF_NC03_RNA_novo.r1 /01.rename/HF_NC03_RNA_novo.r1.fq.gz

过滤文件目录:02.trim (高质量的reads文件)

撰写脚本quant_feature.py:生成批量运行shell文件

# key command
kallisto quant 
    -i kallisto_index/Mus_musculus.GRCm38 
    -g gtf_file 
    -o kallisto_quant/HF07 
    -b 30 
    -t 10 02.trim/HF07_1.fastq.gz 02.trim/HF07_2.fastq.gz
    
salmon quant 
    -i salmon_index/Mus_musculus.GRCm38/ 
    -l IU -p 10 
    -1 02.trim/HF07_1.fastq.gz 
    -2 02.trim/HF07_2.fastq.gz 
    -o salmon_quant/HF07 
    --numBootstraps 30
#!/usr/bin/python

import os
import re
import sys
import argparse as ap
from collections import defaultdict

current_abosulte_path = os.getcwd()


def parse_arguments(args):
    parser = ap.ArgumentParser(description= "the initial script of pipeline")
    parser.add_argument('-t','--trim',metavar='<string>', type=str, help='trimmed data dir')
    parser.add_argument('-s','--sample',metavar='<string>', type=str, help='SampleID|LaneID|Path')
    parser.add_argument('-o','--output',metavar='<string>', type=str, help='the output directory')
    parser.add_argument('-g','--gtf',metavar='<string>', type=str, help='the genome annotation file')
    parser.add_argument('-i','--index',metavar='<string>', type=str, help='the index of genome')
    parser.add_argument('-p','--prefix',metavar='<string>', type=str, help='the prefix of output file')
    return parser.parse_args()


def create_folder(folder):
    '''
    create folder for the result
    '''
    folder_path = os.path.join(current_abosulte_path, folder)
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    return folder_path


def get_path_file(sample):
    '''
    the connections among sampleid, laneid and path
    '''
    dict_lane   = defaultdict(list)
    with open(sample, 'r') as f:
        for line in f:
            line = line.strip()
            if not line.startswith("SampleID"):
                group = re.split(r'\s+', line)
                dict_lane[group[0]].append(group[1])

    return dict_lane


def generate_shell(trim_folder, sample_file, outdir, gtf_file, genome_index, file_name):
    trim_file_folder = os.path.join(current_abosulte_path, trim_folder)
    output_path = create_folder(outdir)
    output_name = os.path.join(current_abosulte_path, file_name)
    sample_name = get_path_file(sample_file)

    output_f = open(output_name, 'w')
    for key in sample_name:
        out_sample_prefix = os.path.join(output_path, key)
        #target1 = [x for x in sample_name[key] if re.findall(r'r1', x)]
        #fq1 = os.path.join(trim_file_folder, ("_".join([target1[0], "val_1.fq.gz"])))
        #target2 = [x for x in sample_name[key] if re.findall(r'r2', x)]
        #fq2 = os.path.join(trim_file_folder, ("_".join([target2[0], "val_2.fq.gz"])))
        fq1 = os.path.join(trim_file_folder, ("_".join([key, "1.fastq.gz"])))
        fq2 = os.path.join(trim_file_folder, ("_".join([key, "2.fastq.gz"])))
        if os.path.isfile(fq1) and os.path.isfile(fq2):
            fq = " ".join([fq1, fq2])

            if re.findall(r'kallisto', genome_index):
                shell = " ".join(["kallisto quant -i", genome_index, "-g", \
                                "gtf_file", "-o", out_sample_prefix, "-b 30 -t 10", fq])
            elif re.findall(r'salmon', genome_index):
                shell = " ".join(["salmon quant -i",  genome_index, \
                                "-l IU -p 10", \
                                "-1", fq1, "-2", fq2, \
                                "-o", out_sample_prefix,\
                                "--numBootstraps 30"])
            output_f.write(shell + "\n")

    output_f.close()


def main():
    args = parse_arguments(sys.argv)
    generate_shell(args.trim, args.sample, args.output, args.gtf, args.index, args.prefix)


if __name__ == '__main__':
    main()

运行脚本: 生成RUN文件

# kallisto 
python quant_feature.py -t 02.trim/ -s 46RNA.samples.path.tsv -o kallisto_quant -g /disk/share/database/Mus_musculus.GRCm38_release100/Mus_musculus.GRCm38.cdna.all.fa -i /disk/share/database/Mus_musculus.GRCm38_release100/kallisto_index/Mus_musculus.GRCm38 -p RUN.kallisto_quant.sh
# salmon
python quant_feature.py -t 02.trim/ -s 46RNA.samples.path.tsv -o salmon_quant -g /disk/share/database/Mus_musculus.GRCm38_release100/Mus_musculus.GRCm38.cdna.all.fa -i /disk/share/database/Mus_musculus.GRCm38_release100/salmon_index/Mus_musculus.GRCm38/ -p RUN.salmon_quant.sh

获取expression matrix:

撰写get_merged_table.R,从quant目录获取整合所有样本表达值的matrix文件

#!/bin/usr/R
library(dplyr)
library(argparser)
library(tximport)

# parameter input
parser <- arg_parser("merge transcript abundance files") %>%
    add_argument("-s", "--sample",
        help = "the sampleID files") %>%
    add_argument("-d", "--dir",
        help = "the dir of output") %>%
    add_argument("-g", "--gene",
        help = "transcriptID into geneID") %>%
    add_argument("-t", "--type",
        help = "the type of software") %>%
    add_argument("-c", "--count",
        help = "the method of scale for featurecounts") %>%
    add_argument("-n", "--name",
        help = "the name of transcript file") %>%
    add_argument("-o", "--out",
        help = "the merged files's dir and name")

args <- parse_args(parser)

# prepare for function
sample <- args$s
dir    <- args$d
tx2gen <- args$g
type   <- args$t
scount <- args$c
name   <- args$n
prefix <- args$o

tx2gene_table <- read.csv(tx2gen, header=T)
tx2gene <- tx2gene_table %>%
            dplyr::select(tx_id, gene_id, gene_name)
phen <- read.table(sample, header=T, sep="\t")
sample_name <- unique(as.character(phen$SampleID))
files <- file.path(dir, sample_name, name)
names(files) <- sample_name
result <- tximport(files,
                   type = type,
                   countsFromAbundance = scount,
                   tx2gene = tx2gene,
                   ignoreTxVersion = T)
save(result, file = prefix)
Rscript get_merged_table.R \
    -s samples.path.tsv \
    -d kallisto_quant/ \
    -g EnsDb.Mmusculus.v79_transcriptID2geneID.csv \
    -t kallisto \
    -c no \
    -n abundance.tsv \
    -o kallisto_quant.RData

Rscript get_merged_table.R \
    -s samples.path.tsv \
    -d salmon_quant/ \
    -g EnsDb.Mmusculus.v79_transcriptID2geneID.csv \
    -t salmon \
    -c no \
    -n quant.sf \
    -o salmon_quant.RData

获取TPM和FPKM表达矩阵:可在本地电脑运行

library(dplyr)
library(tibble)
load("kallisto_quant.RData")
phen <- read.csv("phenotype.csv")
kallisto_count <- round(result$counts) %>% data.frame()
kallisto_length <- apply(result$length, 1, mean) %>% data.frame() %>%
  setNames("Length")

get_profile <- function(matrix, exon_length,
                        y=phen,
                        occurrence=0.2, 
                        ncount=10){
  # matrix=count_format
  # exon_length=count_length 
  # occurrence=0.2
  # ncount=10
  
  # filter with occurrence and ncount
  prf <- matrix %>% rownames_to_column("Type") %>% 
    filter(apply(dplyr::select(., -one_of("Type")), 1, 
                 function(x){sum(x > 0)/length(x)}) > occurrence) %>%
            data.frame(.) %>% 
    column_to_rownames("Type")
  prf <- prf[rowSums(prf) > ncount, ]
  
  # change sampleID 
  sid <- intersect(colnames(prf), y$SampleID)
  phen.cln <- y %>% filter(SampleID%in%sid) %>%
    arrange(SampleID)
  prf.cln <- prf %>% dplyr::select(as.character(phen.cln$SampleID))
  # determine the right order between profile and phenotype 
  for(i in 1:ncol(prf.cln)){ 
    if (!(colnames(prf.cln)[i] == phen.cln$SampleID[i])) {
      stop(paste0(i, " Wrong"))
    }
  }  
  colnames(prf.cln) <- phen.cln$SampleID_v2  
  
  # normalizate the profile using FPKM and TPM
  exon_length.cln <- exon_length[as.character(rownames(prf.cln)), , F]
  for(i in 1:nrow(exon_length.cln)){ 
    if (!(rownames(exon_length.cln)[i] == rownames(prf.cln)[i])) {
      stop(paste0(i, " Wrong"))
    }
  }  
  dat <- prf.cln/exon_length.cln$Length
  dat_FPKM <- t(t(dat)/colSums(prf.cln)) * 10^9
  dat_TPM <- t(t(dat)/colSums(dat)) * 10^6
  
  dat_count <- prf.cln[order(rownames(prf.cln)), ]
  dat_fpkm <- dat_FPKM[order(rownames(dat_FPKM)), ]
  dat_tpm <- dat_TPM[order(rownames(dat_TPM)), ]
  
  res <- list(count=dat_count, fpkm=dat_fpkm, tpm=dat_tpm)
  return(res)
}
prf_out <- function(result, type="STAR"){
  
  dir <- "../../Result/Profile/"
  if(!dir.exists(dir)){
    dir.create(dir)
  }
  count_name <- paste0(dir, type, "_filtered_counts.tsv")
  FPKM_name <- paste0(dir, type, "_filtered_FPKM.tsv")
  TPM_name <- paste0(dir, type, "_filtered_TPM.tsv")  
  
  write.table(x = result$count, 
              file = count_name, 
              sep = '\t', 
              quote = F,
              col.names = NA)
  write.table(x = result$fpkm, 
              file = FPKM_name, 
              sep = '\t', 
              quote = F,
              col.names = NA)
  write.table(x = result$tpm, 
              file = TPM_name, 
              sep = '\t', 
              quote = F,
              col.names = NA)
}

kallisto_prf <- get_profile(kallisto_count, kallisto_length)
# output
prf_out(kallisto_prf, type = "kallisto")

Reference

  1. kallisto manual

  2. salmon github

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容