机器学习基石笔记:06 Theory of Generalization

一、限界函数

H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点。如果给定的样本数N是大于等于k的,易得m_H(N)<2^N,且随着N的增大,其小得越来越多。

图1.1 断点相关1

图1.2 断点相关2

当断点为k时,记最大可能的成长函数m_H(N)为bound函数,记为B(N,k),其只和Nk有关。
注意比较,发现bound函数比起成长函数消除了H。如果无断点,自然没有B(N,k)什么事;如果断点为k,那么m_H(N)是给定H下,在N上可能的最大假设类数;B(N,k)是不限H下,在N上可能的最大假设类数。B(N,k)=\max\limits_H \ m_H(N),只和样本数N和断点k有关。注意这里的H要求有相同的k

图1.3 限界函数的定义

通过数学归纳法可证得:B(N,k)实际被N^{k-1}所框住。

图1.4 数学归纳法1

图1.5 数学归纳法2

既然成长函数的上限被N的多项式给框住,易得,如果断点存在的话,成长函数是多项式型的,证明了上一节的猜想。

图1.6 常见的假设集对应的限界函数

二、VC边界

再看保证E_{in}E_{out}的不等式,可以证得:

图2.1 概率上限的最终形式

证明如下:

  • 用和训练集同样大小的测试集上的表现替代整体输入空间上的表现,认为使得训练集内和整体表现差异过大的坏数据也会使得训练集和测试集上的表现差异过大;
    这里做了2件事:
    一是用有限的训练集+有限的测试集替代了无限的输入空间,将无限的X变为数量为2N的有限数据集;
    二是用完美划分该有限数据集的模式f'代替了完美划分整个输入空间的模式f。这一步实际是进行了松弛操作,因为f'的数量多于f
图2.2 推导1
  • 用有限类数m_H(2N)替代无限|H|
图2.3 推导2
  • 使用不放回的霍夫丁不等式。
    对应于在取小球实验里不放回地抽取,取出的橘色小球频率和罐子里剩余的橘色小球概率依旧概率近似相等。因为 the inequalities also hold when the X_i have been obtained using sampling without replacement; in this case the random variables are not independent anymore.(来自维基百科)
图2.4 推导3

最终得到VC bound:


图2.5 VC边界

所以,2维感知器算法在训练集D上学习到的g泛化到整个输入空间X上是概率近似可行的。
那3维及以上维数的感知器算法呢?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容