Deep learning with Elastic Averaging SGD

1. Abstract

  • A new algorithm is proposed in this setting where the communication and coordination of work
    among concurrent processes (local workers), is based on an elastic force which links the parameters they compute with a center variable stored by the parameter server (master). elastic force连接了local参数和PS上全局的参数
  • enables the local workers to perform more exploration. The algorithm allows the local variables to fluctuate further from the center variable by reducing the amount of communication between local workers and the master. 通过减少local worker和master之间的通信,允许local参数超前探索,远离全局参数
  • 提出了同步的版本和异步的版本
  • We provide the stability analysis of the asynchronous variant in the round-robin scheme and compare it with the more common parallelized method ADMM. 收敛性证明,基于RR模式分析,与并行ADMM比较
  • We additionally propose the momentum-based version of our algorithm that can be applied in both
    synchronous and asynchronous settings. 额外提出了加入动量的版本,能够用于同步和异步版本

2. Intro

  • But practical image recognition systems consist of large-scale convolutional neural networks trained on few GPU cards sitting in a single computer [3, 4]. The main challenge is to devise parallel SGD algorithms to train large-scale deep learning models that yield a significant speedup when run on multiple GPU cards. 本文研究的是单机多GPU卡,挑战是在多GPU卡上并行SGD
  • In this paper we introduce the Elastic Averaging SGD method (EASGD) and its variants. EASGD
    is motivated by quadratic penalty method [5], but is re-interpreted as a parallelized extension of the
    averaging SGD algorithm [6]. 本文提出了EASGD和其variants,motivated by平方惩罚方法,但是被重新设计为average SGD算法的并行版本
  • elastic force 链接了local parameter和master上的center variable,center variable使用moving average来更新,both in time and in space
  • The main contribution of this paper is a new algorithm that provides fast convergent minimization while outperforming DOWNPOUR method [2] and other baseline approaches in practice. 主要贡献是提供了更快的收敛,超过DOWNPOUR和其他baseline方法
  • EASGD减少了master和local workers的通信开销

3. Problem setting

  • This paper focuses on the problem of reducing the parameter communication overhead between the master and local workers. 本文着重的问题是减少master和local worker之间的参数通信

4. EASGD update rule

EASGD_update_rule.png
move_average.png
  • 计算local参数和全局参数之间的差距,然后在梯度下降时,加上这个差距,使得local参数向全局参数靠拢
  • Note that choosing beta=p*alpha� leads to an elastic symmetry in the update rule, i.e. there exists an symmetric force between the update of each local参数和全局参数.
  • Note also that � alpha=eta*rho��, where the magnitude of rho� represents the amount of exploration we allow in the model. In particular, small rho� allows for more exploration as it allows xi to fluctuate further from the center x. rho代表了本地参数能够独自explore到什么程度,小的rho允许更大的explore,允许本地参数能够离全局参数更远
  • The distinctive idea of EASGD is to allow the local workers to perform more exploration (small rho�) and the master to perform exploitation. EASGD的novelty是,允许local worker更多的探索

4.1. Asynchronous EASGD

  • 上个section是同步的EASGD,这一节介绍异步的EASGD
  • Each worker maintains its own clock ti, which starts from 0 and is incremented by 1 after each stochastic gradient update of xi as shown in Algorithm 1. The master performs an update whenever the local workers finished �t steps of their gradient updates, where we refer to �t as the communication period. 每个worker保存自己的clock,每次梯度下降后递增clock,每隔t个clock与master通信一次,更新参数,同时获取最新的全局参数
  • worker等待master发回参数,然后计算elastic difference,接着把elastic difference发回给master,master更新全局参数
  • The communication period � controls the frequency of the communication between every local
    worker and the master, and thus the trade-off between exploration and exploitation. 通信周期控制更新的频率

4.2 Momentum EASGD

  • It is based on the Nesterov’s momentum scheme [24, 25, 26], where the update of the local worker is replaced by the following update
EAMSGD.png

5. Experiments

  • In this section we compare the performance of EASGD and EAMSGD with the parallel method
    DOWNPOUR and the sequential method SGD, as well as their averaging and momentum variants. 比较了EASGD、EAMSGD、Downspour,还有average和momentum变型
  • We perform experiments in a deep learning setting on two benchmark datasets: CIFAR-10 (we refer to it as CIFAR) and ImageNet ILSVRC 2013 (we refer to it as ImageNet). 数据集是CIFAR-10和 ImageNet
  • We focus on the image classification task with deep convolutional neural networks. 算法是图像分类,深度卷积神经网络

6. Conclusion

  • In this paper we describe a new algorithm called EASGD and its variants for training deep neural
    networks in the stochastic setting when the computations are parallelized over multiple GPUs. 在GPU上并行SGD
  • We provide the stability analysis of the asynchronous EASGD in the round-robin scheme, and show the theoretical advantage of the method over ADMM.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容