cnn

import numpy as np

from cs231n.layers import *

from cs231n.fast_layers import *

from cs231n.layer_utils import *

class ThreeLayerConvNet(object):

"""

A three-layer convolutional network with the following architecture:

conv - relu - 2x2 max pool - affine - relu - affine - softmax

The network operates on minibatches of data that have shape (N, C, H, W)

consisting of N images, each with height H and width W and with C input

channels.

"""

def __init__(self, input_dim=(3, 32, 32), num_filters=32, filter_size=7,

hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0,

dtype=np.float32):

"""

Initialize a new network.

Inputs:

- input_dim: Tuple (C, H, W) giving size of input data

- num_filters: Number of filters to use in the convolutional layer

- filter_size: Size of filters to use in the convolutional layer

- hidden_dim: Number of units to use in the fully-connected hidden layer

- num_classes: Number of scores to produce from the final affine layer.

- weight_scale: Scalar giving standard deviation for random initialization

of weights.

- reg: Scalar giving L2 regularization strength

- dtype: numpy datatype to use for computation.

"""

self.params = {}

self.reg = reg

self.dtype = dtype

############################################################################

# TODO: Initialize weights and biases for the three-layer convolutional    #

# network. Weights should be initialized from a Gaussian with standard    #

# deviation equal to weight_scale; biases should be initialized to zero.  #

# All weights and biases should be stored in the dictionary self.params.  #

# Store weights and biases for the convolutional layer using the keys 'W1' #

# and 'b1'; use keys 'W2' and 'b2' for the weights and biases of the      #

# hidden affine layer, and keys 'W3' and 'b3' for the weights and biases  #

# of the output affine layer.                                              #

############################################################################

C, H, W = input_dim

self.params['W1'] = weight_scale * np.random.randn(num_filters, C, filter_size, filter_size)

self.params['b1'] = np.zeros(num_filters)

self.params['W2'] = weight_scale * np.random.randn((H / 2)*(W / 2)*num_filters, hidden_dim)

self.params['b2'] = np.zeros(hidden_dim)

self.params['W3'] = weight_scale * np.random.randn(hidden_dim, num_classes)

self.params['b3'] = np.zeros(num_classes)

#pass

############################################################################

#                            END OF YOUR CODE                            #

############################################################################

for k, v in self.params.iteritems():

self.params[k] = v.astype(dtype)

def loss(self, X, y=None):

"""

Evaluate loss and gradient for the three-layer convolutional network.

Input / output: Same API as TwoLayerNet in fc_net.py.

"""

W1, b1 = self.params['W1'], self.params['b1']

W2, b2 = self.params['W2'], self.params['b2']

W3, b3 = self.params['W3'], self.params['b3']

# pass conv_param to the forward pass for the convolutional layer

filter_size = W1.shape[2]

conv_param = {'stride': 1, 'pad': (filter_size - 1) / 2}

# pass pool_param to the forward pass for the max-pooling layer

pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}

scores = None

############################################################################

# TODO: Implement the forward pass for the three-layer convolutional net,  #

# computing the class scores for X and storing them in the scores          #

# variable.                                                                #

############################################################################

conv_forward_out_1, cache_forward_1 = conv_relu_pool_forward(X, self.params['W1'], self.params['b1'], conv_param, pool_param)

affine_forward_out_2, cache_forward_2 = affine_forward(conv_forward_out_1, self.params['W2'], self.params['b2'])

affine_relu_2, cache_relu_2 = relu_forward(affine_forward_out_2)

scores, cache_forward_3 = affine_forward(affine_relu_2, self.params['W3'], self.params['b3'])

#pass

############################################################################

#                            END OF YOUR CODE                            #

############################################################################

if y is None:

return scores

loss, grads = 0, {}

############################################################################

# TODO: Implement the backward pass for the three-layer convolutional net, #

# storing the loss and gradients in the loss and grads variables. Compute  #

# data loss using softmax, and make sure that grads[k] holds the gradients #

# for self.params[k]. Don't forget to add L2 regularization!              #

############################################################################

loss, dout = softmax_loss(scores, y)

# Add regularization

loss += self.reg * 0.5 * (np.sum(self.params['W1'] ** 2) + np.sum(self.params['W2'] ** 2) + np.sum(self.params['W3'] ** 2))

dX3, grads['W3'], grads['b3'] = affine_backward(dout, cache_forward_3)

dX2 = relu_backward(dX3, cache_relu_2)

dX2, grads['W2'], grads['b2'] = affine_backward(dX2, cache_forward_2)

dX1, grads['W1'], grads['b1'] = conv_relu_pool_backward(dX2, cache_forward_1)

grads['W3'] = grads['W3'] + self.reg * self.params['W3']

grads['W2'] = grads['W2'] + self.reg * self.params['W2']

grads['W1'] = grads['W1'] + self.reg * self.params['W1']

#pass

############################################################################

#                            END OF YOUR CODE                            #

############################################################################

return loss, grads

pass

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容