4.6-单字符串多字段查询-Multi-Match

三种场景

  • 最佳字段 (Best Fields)

    • 当字段之间相互竞争,⼜相互关联。例如 title 和 body 这样的字段。评分来⾃最匹配字段
  • 多数字段 (Most Fields)

    • 处理英⽂内容时:⼀种常⻅的⼿段是,在主字段( English Analyzer),抽取词⼲,加⼊同义词,以 匹配更多的⽂档。相同的⽂本,加⼊⼦字段(Standard Analyzer),以提供更加精确的匹配。其他字 段作为匹配⽂档提⾼相关度的信号。匹配字段越多则越好
  • 混合字段 (Cross Field)

    • 对于某些实体,例如⼈名,地址,图书信息。需要在多个字段中确定信息,单个字段只能作为整体 的⼀部分。希望在任何这些列出的字段中找到尽可能多的词

Multi Match Query

  • Best Fields 是默认类型,可以不⽤指定

  • Minimum should match 等参数可以传递到⽣成的 query 中

POST blogs/_search
{
  "query": {
    "multi_match": {
      "type": "best_fields",
      "query": "Quick pets",
      "fields": ["title","body"],
      "tie_breaker": 0.2,
      "minimum_should_match": "20%"
    }
  }
}

⼀个查询案例

  • 英⽂分词器,导致精确度降低,时态信息丢失
PUT /titles
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "english"
      }
    }
  }
}

POST titles/_bulk
{ "index": { "_id": 1 }}
{ "title": "My dog barks" }
{ "index": { "_id": 2 }}
{ "title": "I see a lot of barking dogs on the road " }


GET titles/_search
{
  "query": {
    "match": {
      "title": "barking dogs"
    }
  }
}
image.png

使⽤多数字段匹配解决

  • ⽤⼴度匹配字段 title 包括尽可能多的⽂档——以提 升召回率——同时⼜使⽤字段 title.std 作为信号 将 相关度更⾼的⽂档置于结果顶部。

  • 每个字段对于最终评分的贡献可以通过⾃定义值 boost 来控制。⽐如,使 title 字段更为重要, 这样同时也降低了其他信号字段的作⽤

DELETE /titles
PUT /titles
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "english",
        "fields": {"std": {"type": "text","analyzer": "standard"}}
      }
    }
  }
}

POST titles/_bulk
{ "index": { "_id": 1 }}
{ "title": "My dog barks" }
{ "index": { "_id": 2 }}
{ "title": "I see a lot of barking dogs on the road " }

GET /titles/_search
{
   "query": {
        "multi_match": {
            "query":  "barking dogs",
            "type":   "most_fields",
            "fields": [ "title", "title.std" ]
        }
    }
}

GET /titles/_search
{
   "query": {
        "multi_match": {
            "query":  "barking dogs",
            "type":   "most_fields",
            "fields": [ "title^10", "title.std" ]
        }
    }
}

跨字段搜索

  • ⽆法使⽤ Operator

  • 可以⽤ copy_to 解决,但是需要额外的存储空间

PUT address/_doc/1
{
  "street": "5 Poland Street",
  "city": "London",
  "country": "United Kingdom",
  "postcode": "W1V 3Dg"
}


POST address/_search
{
 "query": {
    "multi_match": {
      "query": "Poland Street W1V",
      "type": "most_fields",
      "fields": ["street", "city", "country", "postcode"]
    }
  }
}

跨字段搜索 [cross_fields解决]

POST address/_search
{
 "query": {
    "multi_match": {
      "query": "Poland Street W1V",
      "type": "cross_fields",
      "operator": "and", 
      "fields": ["street", "city", "country", "postcode"]
    }
  }
}
  • ⽀持使⽤ Operator

  • 与 copy_to, 相⽐,其中⼀个优势就是它可以在搜索时为单个字段提升权重。

本节知识点回顾

  • Multi Match 查询的基本语法

  • 查询的类型

  • 最佳字段 / 多数字段 / 跨字段

  • Boosting

  • 控制 Precision

  • 以及使⽤⼦字段多数字段算分,控制

  • 使⽤ Operator

课程demo

POST blogs/_search
{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "Quick pets" }},
                { "match": { "body":  "Quick pets" }}
            ],
            "tie_breaker": 0.2
        }
    }
}

POST blogs/_search
{
  "query": {
    "multi_match": {
      "type": "best_fields",
      "query": "Quick pets",
      "fields": ["title","body"],
      "tie_breaker": 0.2,
      "minimum_should_match": "20%"
    }
  }
}



POST books/_search
{
    "multi_match": {
        "query":  "Quick brown fox",
        "fields": "*_title"
    }
}


POST books/_search
{
    "multi_match": {
        "query":  "Quick brown fox",
        "fields": [ "*_title", "chapter_title^2" ]
    }
}



DELETE /titles
PUT /titles
{
  "settings": {
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "english",
        "fields": {
          "std": {
            "type": "text",
            "analyzer": "standard"
          }
        }
      }
    }
  }
}

PUT /titles
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "english"
      }
    }
  }
}

POST titles/_bulk
{ "index": { "_id": 1 }}
{ "title": "My dog barks" }
{ "index": { "_id": 2 }}
{ "title": "I see a lot of barking dogs on the road " }


GET titles/_search
{
  "query": {
    "match": {
      "title": "barking dogs"
    }
  }
}

DELETE /titles
PUT /titles
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "english",
        "fields": {"std": {"type": "text","analyzer": "standard"}}
      }
    }
  }
}

POST titles/_bulk
{ "index": { "_id": 1 }}
{ "title": "My dog barks" }
{ "index": { "_id": 2 }}
{ "title": "I see a lot of barking dogs on the road " }

GET /titles/_search
{
   "query": {
        "multi_match": {
            "query":  "barking dogs",
            "type":   "most_fields",
            "fields": [ "title", "title.std" ]
        }
    }
}

GET /titles/_search
{
   "query": {
        "multi_match": {
            "query":  "barking dogs",
            "type":   "most_fields",
            "fields": [ "title^10", "title.std" ]
        }
    }
}



PUT address/_doc/1
{
  "street": "5 Poland Street",
  "city": "London",
  "country": "United Kingdom",
  "postcode": "W1V 3Dg"
}


POST address/_search
{
 "query": {
    "multi_match": {
      "query": "Poland Street W1V",
      "type": "most_fields",
      "fields": ["street", "city", "country", "postcode"]
    }
  }
}


POST address/_search
{
 "query": {
    "multi_match": {
      "query": "Poland Street W1V",
      "type": "cross_fields",
      "operator": "and", 
      "fields": ["street", "city", "country", "postcode"]
    }
  }
}

相关阅读

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容