数据复杂度分析
数据结构和算法本身解决的快和省的问题;
如何衡量的代码的执行效率;时间、空间复杂度分析。
1. 测试结果非常依赖测试环境
2.测试结果受数据规模的影响很大
大O复杂度表示法
所有代码的执行时间T(n)与每行代码的执行次数成正比。
大O时间复杂度表示法。大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
时间复杂度分析
1.只关注循环执行次数最多的一段代码
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
其中第2、3行代码都是常量级的执行时间,与n的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第4、5行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了n次,所以总的时间复杂度就是O(n)。
2.加法法则:总复杂度等于量级最大的那段代码的复杂度
3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
几种常见时间复杂度实例分析
1. O(1)
一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2. O(logn)、O(nlogn)
i=1;
while (i <= n) {
i = i * 2;
}
从代码中可以看出,变量i的值从1开始取,每循环一次就乘以2。当大于n时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量i的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:
现在,把代码稍微改下,这段代码的时间复杂度是多少?
i=1;
while (i <= n) {
i = i * 3;
}
根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为O(log3n)。
实际上,不管是以2为底、以3为底,还是以10为底,我们可以把所有对数阶的时间复杂度都记为O(logn)。为什么呢?
空间复杂度分析
时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。
我们常见的空间复杂度就是O(1)、O(n)、O(n2 ),像O(logn)、O(nlogn)这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。