【时间序列分析】为什么要做协整检验,文章中使用时应注意哪些问题?

在理解协整检验之前呢,需要理解一个概念“伪回归”!

什么是伪回归?

        就是说,在经典的线性回归模型下,比如多元回归模型中,为了使得统计结果具有无偏性和一致性(也就是说随着样本的无线增大,估计值与真实值无限接近),是要对模型提出多个要求,除了要求随机扰动项独立一致性分布外,还要要求因变量和自变量为平稳的时间序列。

     

      而在现实中,大部分时间序列均为非平稳的,这就使得建立在非平稳序列基础上的协整以及与之相伴的误差修正模型得到日益广泛的应用。

    对于几个非平稳的时间序列,如果由他们组成的线性组合变量,是平稳的序列,就可以认定这几个变量存在协整关系,经济意义可以解释为这几个变量间具有长期均衡关系,啥叫长期均衡关系,比如收入与消费之间,收入越高,消费就越高,这看上去两者存在长期的关系。

协整检验常用的方法是Engle-Granger两步法和Johansen协整检验

Engle-Granger两步法步骤:

(1)首先对变量进行平稳性检验。注意:变量必须是相同阶数的单整过程才可以,比如说其中一个变量差分一次就平稳,即为一阶单整,其他变量也要求应该是一阶单整

(2)构建经典的线性回归模型

(3)对残差的平稳性进行检验。

(4)构建误差修正模型

(5)在协整检验和误差修正之后,需要运用相关的诊断检验进一步验证误差修正模型是否完备,比如说各个滞后项的滞后期数是否合理,并给出合理的解释。

至此,一个完整的协整分析就做完了,但是需要注意的是,这种方法只适合饮用在两个变量的时候,如果变量多了,就要使用Johansen协整检验。

注意:在Johansen协整检验中,N个变量最多只有N-1个协整关系,为什么?记住吧!估计推导出来,你都睡着了。

Johansen协整检验步骤:

(1)确定协整向量的个数(准确来讲,就是确定这N个变量组成的N*N维矩阵的秩)

(2)构建VAR模型,Johansen协整检验是建立在非平稳序列下构建VAR模型基础上的

(3)看迹(trace)统计量,(它的检验是一个联合显著性检验,靠谱)

(4)构建向量误差修正模型(VECM) 注意:变量间协整方程要在向量误差修正模型构建完之后才能获得。

(5)诊断检验与结果分析

什么是误差修正模型(ECM)和向量误差修正模型(VECM)?下一次再说

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343